{"title":"具有随机单调性的随机时间范围偏微分方程的加权解和一般增长发生器及相关偏微分方程","authors":"Xinying Li, Yaqi Zhang, Shengjun Fan","doi":"10.1016/j.spa.2025.104758","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on a multidimensional backward stochastic differential equation (BSDE) with a general random terminal time <span><math><mi>τ</mi></math></span> taking values in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>]</mo></mrow></math></span>. The generator <span><math><mi>g</mi></math></span> satisfies a stochastic monotonicity condition in the first unknown variable <span><math><mi>y</mi></math></span> and a stochastic Lipschitz continuity condition in the second unknown variable <span><math><mi>z</mi></math></span>, and it can have a more general growth with respect to <span><math><mi>y</mi></math></span> than the classical one stated in (H5) of Briand et al. (2003). Without imposing any restriction of finite moment on the stochastic coefficients, we establish a general existence and uniqueness result for the weighted solution of such BSDE in a proper weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-space with a suitable weighted factor. This result is proved via some innovative ideas and delicate analytical techniques, and it unifies and strengthens some existing works on BSDEs with stochastic monotonicity generators, BSDEs with stochastic Lipschitz generators, and BSDEs with deterministic Lipschitz/monotonicity generators. Then, a continuous dependence property and a stability theorem for the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-solutions are given. We also derive the nonlinear Feynman–Kac formulas for both parabolic and elliptic PDEs in our context.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104758"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted solutions of random time horizon BSDEs with stochastic monotonicity and general growth generators and related PDEs\",\"authors\":\"Xinying Li, Yaqi Zhang, Shengjun Fan\",\"doi\":\"10.1016/j.spa.2025.104758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on a multidimensional backward stochastic differential equation (BSDE) with a general random terminal time <span><math><mi>τ</mi></math></span> taking values in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>]</mo></mrow></math></span>. The generator <span><math><mi>g</mi></math></span> satisfies a stochastic monotonicity condition in the first unknown variable <span><math><mi>y</mi></math></span> and a stochastic Lipschitz continuity condition in the second unknown variable <span><math><mi>z</mi></math></span>, and it can have a more general growth with respect to <span><math><mi>y</mi></math></span> than the classical one stated in (H5) of Briand et al. (2003). Without imposing any restriction of finite moment on the stochastic coefficients, we establish a general existence and uniqueness result for the weighted solution of such BSDE in a proper weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-space with a suitable weighted factor. This result is proved via some innovative ideas and delicate analytical techniques, and it unifies and strengthens some existing works on BSDEs with stochastic monotonicity generators, BSDEs with stochastic Lipschitz generators, and BSDEs with deterministic Lipschitz/monotonicity generators. Then, a continuous dependence property and a stability theorem for the weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-solutions are given. We also derive the nonlinear Feynman–Kac formulas for both parabolic and elliptic PDEs in our context.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"190 \",\"pages\":\"Article 104758\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925002029\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925002029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一个具有一般随机终端时间τ取值为[0,+∞]的多维倒向随机微分方程(BSDE)。发生器g在第一个未知变量y上满足随机单调性条件,在第二个未知变量z上满足随机Lipschitz连续性条件,相对于Briand et al. (2003) (H5)中的经典增长,它可以具有更一般的关于y的增长。在不对随机系数施加有限矩限制的情况下,我们建立了这类BSDE的加权解在适当的加权l2空间中具有适当的加权因子的一般存在唯一性结果。这一结果是通过一些创新的思想和精细的分析技术得到证明的,它统一和加强了现有的关于随机单调生成的BSDEs、随机Lipschitz生成的BSDEs和确定性Lipschitz/单调生成的BSDEs。然后,给出了加权l2 -解的连续相关性质和稳定性定理。本文还推导了抛物型和椭圆型偏微分方程的非线性Feynman-Kac公式。
Weighted solutions of random time horizon BSDEs with stochastic monotonicity and general growth generators and related PDEs
This study focuses on a multidimensional backward stochastic differential equation (BSDE) with a general random terminal time taking values in . The generator satisfies a stochastic monotonicity condition in the first unknown variable and a stochastic Lipschitz continuity condition in the second unknown variable , and it can have a more general growth with respect to than the classical one stated in (H5) of Briand et al. (2003). Without imposing any restriction of finite moment on the stochastic coefficients, we establish a general existence and uniqueness result for the weighted solution of such BSDE in a proper weighted -space with a suitable weighted factor. This result is proved via some innovative ideas and delicate analytical techniques, and it unifies and strengthens some existing works on BSDEs with stochastic monotonicity generators, BSDEs with stochastic Lipschitz generators, and BSDEs with deterministic Lipschitz/monotonicity generators. Then, a continuous dependence property and a stability theorem for the weighted -solutions are given. We also derive the nonlinear Feynman–Kac formulas for both parabolic and elliptic PDEs in our context.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.