{"title":"调节酶活性的方法:实验和计算的最新进展","authors":"Qiang Cui","doi":"10.1016/j.sbi.2025.103124","DOIUrl":null,"url":null,"abstract":"<div><div>Major progress has been made in recent years in terms of strategies for regulating enzyme activities. Novel high-throughput enzyme kinetic assays and efficient computational methodologies enabled a deeper understanding of molecular mechanisms that dictate the activity of enzymes, which provide guidance to rational modulation of enzyme catalysis. Continued development of efficient screening, directed evolution technologies, and machine learning–driven protein engineering tools make it possible to tune enzyme activities without having to understand the detailed mechanism of catalysis regulation. By combining these two limiting approaches, the efficiency of enzyme regulation can be substantially improved as a mechanistic understanding can help reduce the size of design space before the ‘brute-force’ engineering approach takes over. We briefly discuss relevant advances in both experiment and computation and comment on future developments that can further enhance mechanistic understanding and engineering capability for broad applications.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103124"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approaches for regulating enzyme activities: Recent advances in experiment and computation\",\"authors\":\"Qiang Cui\",\"doi\":\"10.1016/j.sbi.2025.103124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Major progress has been made in recent years in terms of strategies for regulating enzyme activities. Novel high-throughput enzyme kinetic assays and efficient computational methodologies enabled a deeper understanding of molecular mechanisms that dictate the activity of enzymes, which provide guidance to rational modulation of enzyme catalysis. Continued development of efficient screening, directed evolution technologies, and machine learning–driven protein engineering tools make it possible to tune enzyme activities without having to understand the detailed mechanism of catalysis regulation. By combining these two limiting approaches, the efficiency of enzyme regulation can be substantially improved as a mechanistic understanding can help reduce the size of design space before the ‘brute-force’ engineering approach takes over. We briefly discuss relevant advances in both experiment and computation and comment on future developments that can further enhance mechanistic understanding and engineering capability for broad applications.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"94 \",\"pages\":\"Article 103124\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25001423\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001423","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Approaches for regulating enzyme activities: Recent advances in experiment and computation
Major progress has been made in recent years in terms of strategies for regulating enzyme activities. Novel high-throughput enzyme kinetic assays and efficient computational methodologies enabled a deeper understanding of molecular mechanisms that dictate the activity of enzymes, which provide guidance to rational modulation of enzyme catalysis. Continued development of efficient screening, directed evolution technologies, and machine learning–driven protein engineering tools make it possible to tune enzyme activities without having to understand the detailed mechanism of catalysis regulation. By combining these two limiting approaches, the efficiency of enzyme regulation can be substantially improved as a mechanistic understanding can help reduce the size of design space before the ‘brute-force’ engineering approach takes over. We briefly discuss relevant advances in both experiment and computation and comment on future developments that can further enhance mechanistic understanding and engineering capability for broad applications.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation