用滑移边界条件模拟毛细上升:Washburn方程解的适定性和长时间动力学

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Isidora Rapajić , Srboljub Simić , Endre Süli
{"title":"用滑移边界条件模拟毛细上升:Washburn方程解的适定性和长时间动力学","authors":"Isidora Rapajić ,&nbsp;Srboljub Simić ,&nbsp;Endre Süli","doi":"10.1016/j.physd.2025.134842","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to extend Washburn’s capillary rise equation by incorporating a slip condition at the pipe wall. The governing equation is derived using fundamental principles from continuum mechanics. A new scaling is introduced, allowing for a systematic analysis of different flow regimes. We prove the global-in-time existence and uniqueness of a bounded positive solution to Washburn’s equation that includes the slip parameter, as well as the continuous dependence of the solution in the maximum norm on the initial data. Thus, the initial-value problem for Washburn’s equation is shown to be well-posed in the sense of Hadamard. Additionally, we show that the unique equilibrium solution may be reached either monotonically or in an oscillatory fashion, similarly to the no-slip case. Finally, we determine the basin of attraction for the system, ensuring that the equilibrium state will be reached from the initial data we impose. These results hold for any positive value of the nondimensional slip parameter in the model, and for all values of the ratio <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>/</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> in the range <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>2</mn><mo>]</mo></mrow></math></span>, where <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the initial height of the fluid column and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> is its equilibrium height.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134842"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling capillary rise with a slip boundary condition: Well-posedness and long-time dynamics of solutions to Washburn’s equation\",\"authors\":\"Isidora Rapajić ,&nbsp;Srboljub Simić ,&nbsp;Endre Süli\",\"doi\":\"10.1016/j.physd.2025.134842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this paper is to extend Washburn’s capillary rise equation by incorporating a slip condition at the pipe wall. The governing equation is derived using fundamental principles from continuum mechanics. A new scaling is introduced, allowing for a systematic analysis of different flow regimes. We prove the global-in-time existence and uniqueness of a bounded positive solution to Washburn’s equation that includes the slip parameter, as well as the continuous dependence of the solution in the maximum norm on the initial data. Thus, the initial-value problem for Washburn’s equation is shown to be well-posed in the sense of Hadamard. Additionally, we show that the unique equilibrium solution may be reached either monotonically or in an oscillatory fashion, similarly to the no-slip case. Finally, we determine the basin of attraction for the system, ensuring that the equilibrium state will be reached from the initial data we impose. These results hold for any positive value of the nondimensional slip parameter in the model, and for all values of the ratio <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>/</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span> in the range <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>2</mn><mo>]</mo></mrow></math></span>, where <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the initial height of the fluid column and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> is its equilibrium height.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134842\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003197\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是通过在管壁处加入滑移条件来扩展Washburn的毛细管上升方程。控制方程是用连续介质力学的基本原理推导出来的。引入了一种新的尺度,允许系统地分析不同的流动形式。我们证明了包含滑移参数的Washburn方程的有界正解的全局存在唯一性,以及该解在最大范数上对初始数据的连续依赖性。从而证明了Washburn方程的初值问题在Hadamard意义上是适定的。此外,我们证明了唯一平衡解可以单调地或以振荡的方式达到,类似于无滑移的情况。最后,我们确定了系统的吸引力盆地,确保从我们施加的初始数据达到平衡状态。这些结果适用于模型中无量纲滑移参数的任何正值,以及比值h0/he在[0,3/2]范围内的所有值,其中h0为流体柱的初始高度,he为流体柱的平衡高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling capillary rise with a slip boundary condition: Well-posedness and long-time dynamics of solutions to Washburn’s equation
The aim of this paper is to extend Washburn’s capillary rise equation by incorporating a slip condition at the pipe wall. The governing equation is derived using fundamental principles from continuum mechanics. A new scaling is introduced, allowing for a systematic analysis of different flow regimes. We prove the global-in-time existence and uniqueness of a bounded positive solution to Washburn’s equation that includes the slip parameter, as well as the continuous dependence of the solution in the maximum norm on the initial data. Thus, the initial-value problem for Washburn’s equation is shown to be well-posed in the sense of Hadamard. Additionally, we show that the unique equilibrium solution may be reached either monotonically or in an oscillatory fashion, similarly to the no-slip case. Finally, we determine the basin of attraction for the system, ensuring that the equilibrium state will be reached from the initial data we impose. These results hold for any positive value of the nondimensional slip parameter in the model, and for all values of the ratio h0/he in the range [0,3/2], where h0 is the initial height of the fluid column and he is its equilibrium height.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信