旗簇定向上同的Leray-Hirsch定理

IF 1.5 1区 数学 Q1 MATHEMATICS
J. Matthew Douglass , Changlong Zhong
{"title":"旗簇定向上同的Leray-Hirsch定理","authors":"J. Matthew Douglass ,&nbsp;Changlong Zhong","doi":"10.1016/j.aim.2025.110450","DOIUrl":null,"url":null,"abstract":"<div><div>We construct two explicit Leray-Hirsch isomorphisms for torus equivariant oriented cohomology of flag varieties and give several applications. One isomorphism is geometric, based on Bott-Samelson classes. The other is algebraic, based on the description of the torus equivariant oriented cohomology of a flag variety as the dual of a formal affine Demazure algebra.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110450"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Leray-Hirsch Theorem for oriented cohomology of flag varieties\",\"authors\":\"J. Matthew Douglass ,&nbsp;Changlong Zhong\",\"doi\":\"10.1016/j.aim.2025.110450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct two explicit Leray-Hirsch isomorphisms for torus equivariant oriented cohomology of flag varieties and give several applications. One isomorphism is geometric, based on Bott-Samelson classes. The other is algebraic, based on the description of the torus equivariant oriented cohomology of a flag variety as the dual of a formal affine Demazure algebra.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110450\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003482\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003482","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

构造了环面等变取向上同构的两个显式Leray-Hirsch同构,并给出了几个应用。一种同构是基于bot - samelson类的几何同构。另一种是代数的,基于对标志变体的环面等变取向上同调作为形式仿射Demazure代数的对偶的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Leray-Hirsch Theorem for oriented cohomology of flag varieties
We construct two explicit Leray-Hirsch isomorphisms for torus equivariant oriented cohomology of flag varieties and give several applications. One isomorphism is geometric, based on Bott-Samelson classes. The other is algebraic, based on the description of the torus equivariant oriented cohomology of a flag variety as the dual of a formal affine Demazure algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信