环面上量子欧拉方程的能量级联和Sobolev范数膨胀

IF 1.5 1区 数学 Q1 MATHEMATICS
Filippo Giuliani , Raffaele Scandone
{"title":"环面上量子欧拉方程的能量级联和Sobolev范数膨胀","authors":"Filippo Giuliani ,&nbsp;Raffaele Scandone","doi":"10.1016/j.aim.2025.110453","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove the existence of solutions to the quantum Euler equations on <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>d</mi><mo>⩾</mo><mn>2</mn></math></span>, with almost constant mass density, displaying energy transfers to high Fourier modes and polynomially fast-in-time growth of Sobolev norms above the finite-energy level. These solutions are uniformly far from vacuum, suggesting that weak turbulence in quantum hydrodynamics is not necessarily related to the occurrence of vortex structures.</div><div>In view of possible connections with instability mechanisms for the classical compressible Euler equations, we also keep track of the dependence on the semiclassical parameter, showing that, at high regularity, the time at which the Sobolev norm inflations occur is uniform when approaching the semiclassical limit.</div><div>Our construction relies on a novel result of Sobolev instability for the plane waves of the cubic nonlinear Schrödinger equation (NLS), which is connected to the quantum Euler equations through the Madelung transform. More precisely, we show the existence of smooth solutions to NLS, which are small-amplitude perturbations of a plane wave and undergo a polynomially fast <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norm inflation for <span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn></math></span>. The proof is based on a partial Birkhoff normal form procedure, involving the normalization of non-homogeneous Hamiltonian terms.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110453"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy cascade and Sobolev norms inflation for the quantum Euler equations on tori\",\"authors\":\"Filippo Giuliani ,&nbsp;Raffaele Scandone\",\"doi\":\"10.1016/j.aim.2025.110453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we prove the existence of solutions to the quantum Euler equations on <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>d</mi><mo>⩾</mo><mn>2</mn></math></span>, with almost constant mass density, displaying energy transfers to high Fourier modes and polynomially fast-in-time growth of Sobolev norms above the finite-energy level. These solutions are uniformly far from vacuum, suggesting that weak turbulence in quantum hydrodynamics is not necessarily related to the occurrence of vortex structures.</div><div>In view of possible connections with instability mechanisms for the classical compressible Euler equations, we also keep track of the dependence on the semiclassical parameter, showing that, at high regularity, the time at which the Sobolev norm inflations occur is uniform when approaching the semiclassical limit.</div><div>Our construction relies on a novel result of Sobolev instability for the plane waves of the cubic nonlinear Schrödinger equation (NLS), which is connected to the quantum Euler equations through the Madelung transform. More precisely, we show the existence of smooth solutions to NLS, which are small-amplitude perturbations of a plane wave and undergo a polynomially fast <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norm inflation for <span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn></math></span>. The proof is based on a partial Birkhoff normal form procedure, involving the normalization of non-homogeneous Hamiltonian terms.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110453\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003512\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003512","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们以几乎恒定的质量密度证明了Td, d大于或等于2上量子欧拉方程解的存在性,显示能量转移到高傅立叶模式和有限能级以上Sobolev规范的多项式快速实时增长。这些解都均匀地远离真空,这表明量子流体力学中的弱湍流不一定与漩涡结构的发生有关。考虑到经典可压缩欧拉方程与不稳定机制的可能联系,我们还跟踪了对半经典参数的依赖,表明在高正则性下,当接近半经典极限时,Sobolev范数暴胀发生的时间是均匀的。我们的构造依赖于三次非线性Schrödinger方程(NLS)平面波的Sobolev不稳定性的新结果,该结果通过马德隆变换与量子欧拉方程联系起来。更准确地说,我们证明了NLS的光滑解的存在性,它是平面波的小振幅扰动,并经历了s>;1的多项式快速hs -范数膨胀。该证明是基于一个部分Birkhoff范式过程,涉及到非齐次哈密顿项的归一化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy cascade and Sobolev norms inflation for the quantum Euler equations on tori
In this paper we prove the existence of solutions to the quantum Euler equations on Td, d2, with almost constant mass density, displaying energy transfers to high Fourier modes and polynomially fast-in-time growth of Sobolev norms above the finite-energy level. These solutions are uniformly far from vacuum, suggesting that weak turbulence in quantum hydrodynamics is not necessarily related to the occurrence of vortex structures.
In view of possible connections with instability mechanisms for the classical compressible Euler equations, we also keep track of the dependence on the semiclassical parameter, showing that, at high regularity, the time at which the Sobolev norm inflations occur is uniform when approaching the semiclassical limit.
Our construction relies on a novel result of Sobolev instability for the plane waves of the cubic nonlinear Schrödinger equation (NLS), which is connected to the quantum Euler equations through the Madelung transform. More precisely, we show the existence of smooth solutions to NLS, which are small-amplitude perturbations of a plane wave and undergo a polynomially fast Hs-norm inflation for s>1. The proof is based on a partial Birkhoff normal form procedure, involving the normalization of non-homogeneous Hamiltonian terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信