三维拓扑绝缘体膜表面态的可控自旋能子效应

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Xin-Ning Li, Ning-Xuan Yang, Rui Wang, Chun-Yan Song, Hui Liao, Ting-Ting Song, Xue-Yan Cheng, Jiu-Ming Wang
{"title":"三维拓扑绝缘体膜表面态的可控自旋能子效应","authors":"Xin-Ning Li,&nbsp;Ning-Xuan Yang,&nbsp;Rui Wang,&nbsp;Chun-Yan Song,&nbsp;Hui Liao,&nbsp;Ting-Ting Song,&nbsp;Xue-Yan Cheng,&nbsp;Jiu-Ming Wang","doi":"10.1016/j.physe.2025.116331","DOIUrl":null,"url":null,"abstract":"<div><div>We systematically investigate the spin Nernst effect (SNE) of surface states in three-dimensional topological insulator film under a perpendicular magnetic field. The spin Nernst coefficient <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of surface states, which are lie in the quantum spin Hall regime (QSH), quantum anomalous Hall regime (QAH), and quantum pseudospin Hall regime (QPH), is theoretically calculated by using the Non-equilibrium Green’s function method combined with the square lattice model. Regardless of the presence of a magnetic field, SNE will occur in the system because it primarily arises from spin–orbit coupling. When the Fermi energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> crosses the discrete transverse channels, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> exhibits a pronounced peak. The height of peak strongly depends on the temperature, decreasing with increasing temperature. In the QPH regime, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> with <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> without applying a magnetic field. However, this the symmetrical property is destroyed when a magnetic field is applied. In the QSH and QAH regimes, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is also an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> in magnetic field <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn></mrow></math></span>. When a magnetic field is applied, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of QSH regime retains this symmetrical property due to protection from time-reversal symmetry. But the symmetrical property <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is broken in the QAH regime. This is because that the combined influence of the exchange field and magnetic field breaks time-reversal symmetry, leading to the peak structure of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to reverse around <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. These results indicate that SNE is closely related to the topological characteristics, magnetic field, and temperature, which may provide valuable assistance for the control and modulation of spin currents.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"174 ","pages":"Article 116331"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable spin Nernst effect of surface states in three-dimensional topological insulator film\",\"authors\":\"Xin-Ning Li,&nbsp;Ning-Xuan Yang,&nbsp;Rui Wang,&nbsp;Chun-Yan Song,&nbsp;Hui Liao,&nbsp;Ting-Ting Song,&nbsp;Xue-Yan Cheng,&nbsp;Jiu-Ming Wang\",\"doi\":\"10.1016/j.physe.2025.116331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We systematically investigate the spin Nernst effect (SNE) of surface states in three-dimensional topological insulator film under a perpendicular magnetic field. The spin Nernst coefficient <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of surface states, which are lie in the quantum spin Hall regime (QSH), quantum anomalous Hall regime (QAH), and quantum pseudospin Hall regime (QPH), is theoretically calculated by using the Non-equilibrium Green’s function method combined with the square lattice model. Regardless of the presence of a magnetic field, SNE will occur in the system because it primarily arises from spin–orbit coupling. When the Fermi energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> crosses the discrete transverse channels, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> exhibits a pronounced peak. The height of peak strongly depends on the temperature, decreasing with increasing temperature. In the QPH regime, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> with <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> without applying a magnetic field. However, this the symmetrical property is destroyed when a magnetic field is applied. In the QSH and QAH regimes, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is also an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> in magnetic field <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn></mrow></math></span>. When a magnetic field is applied, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of QSH regime retains this symmetrical property due to protection from time-reversal symmetry. But the symmetrical property <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is broken in the QAH regime. This is because that the combined influence of the exchange field and magnetic field breaks time-reversal symmetry, leading to the peak structure of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to reverse around <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. These results indicate that SNE is closely related to the topological characteristics, magnetic field, and temperature, which may provide valuable assistance for the control and modulation of spin currents.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"174 \",\"pages\":\"Article 116331\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001614\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001614","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

系统地研究了垂直磁场作用下三维拓扑绝缘体膜表面态的自旋能子效应。采用非平衡格林函数法结合方形晶格模型,对量子自旋霍尔(QSH)、量子反常霍尔(QAH)和量子伪自旋霍尔(QPH)表面态的自旋能系数Ns进行了理论计算。无论磁场是否存在,SNE都会在系统中发生,因为它主要是由自旋-轨道耦合产生的。当费米能量EF穿过离散的横向通道时,Ns表现出明显的峰值。峰顶高度与温度密切相关,随温度的升高而降低。在不施加磁场的情况下,Ns是EF的偶函数,Ns(−EF)=Ns(EF)。然而,当施加磁场时,这种对称性就被破坏了。在QSH和QAH体制下,Ns也是磁场φ =0.0时EF的偶函数。当施加磁场时,由于时间反转对称性的保护,QSH态的Ns保持了这种对称性。但在QAH体系中,Ns(−EF)=Ns(EF)的对称性被打破。这是因为交换场和磁场的共同影响打破了时间反转对称性,导致Ns的峰值结构在EF=0附近反转。这些结果表明,SNE与拓扑特性、磁场和温度密切相关,这可能为自旋电流的控制和调制提供有价值的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable spin Nernst effect of surface states in three-dimensional topological insulator film
We systematically investigate the spin Nernst effect (SNE) of surface states in three-dimensional topological insulator film under a perpendicular magnetic field. The spin Nernst coefficient Ns of surface states, which are lie in the quantum spin Hall regime (QSH), quantum anomalous Hall regime (QAH), and quantum pseudospin Hall regime (QPH), is theoretically calculated by using the Non-equilibrium Green’s function method combined with the square lattice model. Regardless of the presence of a magnetic field, SNE will occur in the system because it primarily arises from spin–orbit coupling. When the Fermi energy EF crosses the discrete transverse channels, Ns exhibits a pronounced peak. The height of peak strongly depends on the temperature, decreasing with increasing temperature. In the QPH regime, Ns is an even function of EF with Ns(EF)=Ns(EF) without applying a magnetic field. However, this the symmetrical property is destroyed when a magnetic field is applied. In the QSH and QAH regimes, Ns is also an even function of EF in magnetic field ϕ=0.0. When a magnetic field is applied, Ns of QSH regime retains this symmetrical property due to protection from time-reversal symmetry. But the symmetrical property Ns(EF)=Ns(EF) is broken in the QAH regime. This is because that the combined influence of the exchange field and magnetic field breaks time-reversal symmetry, leading to the peak structure of Ns to reverse around EF=0. These results indicate that SNE is closely related to the topological characteristics, magnetic field, and temperature, which may provide valuable assistance for the control and modulation of spin currents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信