{"title":"三维拓扑绝缘体膜表面态的可控自旋能子效应","authors":"Xin-Ning Li, Ning-Xuan Yang, Rui Wang, Chun-Yan Song, Hui Liao, Ting-Ting Song, Xue-Yan Cheng, Jiu-Ming Wang","doi":"10.1016/j.physe.2025.116331","DOIUrl":null,"url":null,"abstract":"<div><div>We systematically investigate the spin Nernst effect (SNE) of surface states in three-dimensional topological insulator film under a perpendicular magnetic field. The spin Nernst coefficient <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of surface states, which are lie in the quantum spin Hall regime (QSH), quantum anomalous Hall regime (QAH), and quantum pseudospin Hall regime (QPH), is theoretically calculated by using the Non-equilibrium Green’s function method combined with the square lattice model. Regardless of the presence of a magnetic field, SNE will occur in the system because it primarily arises from spin–orbit coupling. When the Fermi energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> crosses the discrete transverse channels, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> exhibits a pronounced peak. The height of peak strongly depends on the temperature, decreasing with increasing temperature. In the QPH regime, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> with <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> without applying a magnetic field. However, this the symmetrical property is destroyed when a magnetic field is applied. In the QSH and QAH regimes, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is also an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> in magnetic field <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn></mrow></math></span>. When a magnetic field is applied, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of QSH regime retains this symmetrical property due to protection from time-reversal symmetry. But the symmetrical property <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is broken in the QAH regime. This is because that the combined influence of the exchange field and magnetic field breaks time-reversal symmetry, leading to the peak structure of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to reverse around <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. These results indicate that SNE is closely related to the topological characteristics, magnetic field, and temperature, which may provide valuable assistance for the control and modulation of spin currents.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"174 ","pages":"Article 116331"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable spin Nernst effect of surface states in three-dimensional topological insulator film\",\"authors\":\"Xin-Ning Li, Ning-Xuan Yang, Rui Wang, Chun-Yan Song, Hui Liao, Ting-Ting Song, Xue-Yan Cheng, Jiu-Ming Wang\",\"doi\":\"10.1016/j.physe.2025.116331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We systematically investigate the spin Nernst effect (SNE) of surface states in three-dimensional topological insulator film under a perpendicular magnetic field. The spin Nernst coefficient <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of surface states, which are lie in the quantum spin Hall regime (QSH), quantum anomalous Hall regime (QAH), and quantum pseudospin Hall regime (QPH), is theoretically calculated by using the Non-equilibrium Green’s function method combined with the square lattice model. Regardless of the presence of a magnetic field, SNE will occur in the system because it primarily arises from spin–orbit coupling. When the Fermi energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> crosses the discrete transverse channels, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> exhibits a pronounced peak. The height of peak strongly depends on the temperature, decreasing with increasing temperature. In the QPH regime, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> with <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> without applying a magnetic field. However, this the symmetrical property is destroyed when a magnetic field is applied. In the QSH and QAH regimes, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is also an even function of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub></math></span> in magnetic field <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn></mrow></math></span>. When a magnetic field is applied, <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of QSH regime retains this symmetrical property due to protection from time-reversal symmetry. But the symmetrical property <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is broken in the QAH regime. This is because that the combined influence of the exchange field and magnetic field breaks time-reversal symmetry, leading to the peak structure of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to reverse around <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. These results indicate that SNE is closely related to the topological characteristics, magnetic field, and temperature, which may provide valuable assistance for the control and modulation of spin currents.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"174 \",\"pages\":\"Article 116331\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001614\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001614","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Controllable spin Nernst effect of surface states in three-dimensional topological insulator film
We systematically investigate the spin Nernst effect (SNE) of surface states in three-dimensional topological insulator film under a perpendicular magnetic field. The spin Nernst coefficient of surface states, which are lie in the quantum spin Hall regime (QSH), quantum anomalous Hall regime (QAH), and quantum pseudospin Hall regime (QPH), is theoretically calculated by using the Non-equilibrium Green’s function method combined with the square lattice model. Regardless of the presence of a magnetic field, SNE will occur in the system because it primarily arises from spin–orbit coupling. When the Fermi energy crosses the discrete transverse channels, exhibits a pronounced peak. The height of peak strongly depends on the temperature, decreasing with increasing temperature. In the QPH regime, is an even function of with without applying a magnetic field. However, this the symmetrical property is destroyed when a magnetic field is applied. In the QSH and QAH regimes, is also an even function of in magnetic field . When a magnetic field is applied, of QSH regime retains this symmetrical property due to protection from time-reversal symmetry. But the symmetrical property is broken in the QAH regime. This is because that the combined influence of the exchange field and magnetic field breaks time-reversal symmetry, leading to the peak structure of to reverse around . These results indicate that SNE is closely related to the topological characteristics, magnetic field, and temperature, which may provide valuable assistance for the control and modulation of spin currents.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures