Jonatan Flyckt , Tony Gorschek , Daniel Mendez , Niklas Lavesson
{"title":"确定按订单制造组织中的关键人工智能挑战:多案例研究","authors":"Jonatan Flyckt , Tony Gorschek , Daniel Mendez , Niklas Lavesson","doi":"10.1016/j.jss.2025.112559","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence can make manufacturing organisations more effective and efficient, but it is not clear which AI tasks hold the greatest potential. Make-to-order manufacturers must constantly adapt to customers’ unique and rapidly changing needs, and therefore have different challenges than make-to-stock manufacturers. Our ambition is to develop an AI-enabled software system to support manufacturing organisations in improving their processes. To this end, we first seek to understand the data and technology requirements for key AI-enabled tasks in a make-to-order setting and determine the level of performance and explainability needed to address them. We perform a multiple case study of five make-to-order packaging manufacturers, interviewing personnel from sales, production, and supply chain to identify and prioritise operational challenges suitable for AI approaches. Demand forecasting emerges as the most important task, followed by predictive maintenance, quality inspection, complex decision risk estimation, and production planning. Participants emphasise the importance of explainable techniques to ensure trust in the systems. The results highlight a need for a greater control of the production process and a better understanding of customer needs. Although most of the tasks could be solved with current techniques, some, such as intermittent demand forecasting and complex decision risk estimation, would require further development. The study clarifies the potential of AI-enabled systems in make-to-order manufacturing and outlines the steps required to realise it.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"230 ","pages":"Article 112559"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying key AI challenges in make-to-order manufacturing organisations: A multiple case study\",\"authors\":\"Jonatan Flyckt , Tony Gorschek , Daniel Mendez , Niklas Lavesson\",\"doi\":\"10.1016/j.jss.2025.112559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial Intelligence can make manufacturing organisations more effective and efficient, but it is not clear which AI tasks hold the greatest potential. Make-to-order manufacturers must constantly adapt to customers’ unique and rapidly changing needs, and therefore have different challenges than make-to-stock manufacturers. Our ambition is to develop an AI-enabled software system to support manufacturing organisations in improving their processes. To this end, we first seek to understand the data and technology requirements for key AI-enabled tasks in a make-to-order setting and determine the level of performance and explainability needed to address them. We perform a multiple case study of five make-to-order packaging manufacturers, interviewing personnel from sales, production, and supply chain to identify and prioritise operational challenges suitable for AI approaches. Demand forecasting emerges as the most important task, followed by predictive maintenance, quality inspection, complex decision risk estimation, and production planning. Participants emphasise the importance of explainable techniques to ensure trust in the systems. The results highlight a need for a greater control of the production process and a better understanding of customer needs. Although most of the tasks could be solved with current techniques, some, such as intermittent demand forecasting and complex decision risk estimation, would require further development. The study clarifies the potential of AI-enabled systems in make-to-order manufacturing and outlines the steps required to realise it.</div></div>\",\"PeriodicalId\":51099,\"journal\":{\"name\":\"Journal of Systems and Software\",\"volume\":\"230 \",\"pages\":\"Article 112559\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems and Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0164121225002286\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225002286","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Identifying key AI challenges in make-to-order manufacturing organisations: A multiple case study
Artificial Intelligence can make manufacturing organisations more effective and efficient, but it is not clear which AI tasks hold the greatest potential. Make-to-order manufacturers must constantly adapt to customers’ unique and rapidly changing needs, and therefore have different challenges than make-to-stock manufacturers. Our ambition is to develop an AI-enabled software system to support manufacturing organisations in improving their processes. To this end, we first seek to understand the data and technology requirements for key AI-enabled tasks in a make-to-order setting and determine the level of performance and explainability needed to address them. We perform a multiple case study of five make-to-order packaging manufacturers, interviewing personnel from sales, production, and supply chain to identify and prioritise operational challenges suitable for AI approaches. Demand forecasting emerges as the most important task, followed by predictive maintenance, quality inspection, complex decision risk estimation, and production planning. Participants emphasise the importance of explainable techniques to ensure trust in the systems. The results highlight a need for a greater control of the production process and a better understanding of customer needs. Although most of the tasks could be solved with current techniques, some, such as intermittent demand forecasting and complex decision risk estimation, would require further development. The study clarifies the potential of AI-enabled systems in make-to-order manufacturing and outlines the steps required to realise it.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.