2类张量微积分的类型化(I)

IF 1.4 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Fatimah Rita Ahmadi
{"title":"2类张量微积分的类型化(I)","authors":"Fatimah Rita Ahmadi","doi":"10.1016/j.scico.2025.103376","DOIUrl":null,"url":null,"abstract":"<div><div>To formalize calculations in linear algebra for the development of efficient algorithms and a framework suitable for functional programming languages and faster parallel computations, we adopt an approach that treats linear algebraic structures, such as matrices, as morphisms in the category of matrices, <span><math><mi>Ma</mi><msub><mrow><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. We further generalize this framework to arbitrary monoidal semiadditive categories. To extend this perspective and incorporate higher-rank matrices (tensors), we introduce the notion of semiadditive 2-categories, where matrices <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> are interpreted as 1-morphisms and tensors with four indices <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>j</mi><mi>k</mi><mi>l</mi></mrow></msub></math></span> as 2-morphisms. This formalization provides an index-free, typed framework for linear algebra that naturally accommodates matrices and tensors with up to four indices. Moreover, we extend the framework to monoidal semiadditive 2-categories and demonstrate explicit operations and vectorization techniques within the 2-category of <strong>2Vec</strong>, as introduced by Kapranov and Voevodsky.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"248 ","pages":"Article 103376"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typing tensor calculus in 2-categories (I)\",\"authors\":\"Fatimah Rita Ahmadi\",\"doi\":\"10.1016/j.scico.2025.103376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To formalize calculations in linear algebra for the development of efficient algorithms and a framework suitable for functional programming languages and faster parallel computations, we adopt an approach that treats linear algebraic structures, such as matrices, as morphisms in the category of matrices, <span><math><mi>Ma</mi><msub><mrow><mi>t</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>. We further generalize this framework to arbitrary monoidal semiadditive categories. To extend this perspective and incorporate higher-rank matrices (tensors), we introduce the notion of semiadditive 2-categories, where matrices <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> are interpreted as 1-morphisms and tensors with four indices <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>j</mi><mi>k</mi><mi>l</mi></mrow></msub></math></span> as 2-morphisms. This formalization provides an index-free, typed framework for linear algebra that naturally accommodates matrices and tensors with up to four indices. Moreover, we extend the framework to monoidal semiadditive 2-categories and demonstrate explicit operations and vectorization techniques within the 2-category of <strong>2Vec</strong>, as introduced by Kapranov and Voevodsky.</div></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"248 \",\"pages\":\"Article 103376\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642325001157\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325001157","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了形式化线性代数中的计算,以开发有效的算法和适合函数式编程语言和更快的并行计算的框架,我们采用了一种方法,将线性代数结构(如矩阵)视为矩阵(Matk)类别中的态射。我们进一步将这个框架推广到任意一元半加性范畴。为了扩展这一观点并纳入高秩矩阵(张量),我们引入了半加性2-范畴的概念,其中矩阵Tij被解释为1-态射,具有四指标的张量Tijkl被解释为2-态射。这种形式化为线性代数提供了一个无索引的类型化框架,它可以自然地容纳具有最多四个指标的矩阵和张量。此外,我们将框架扩展到一元半可加的2范畴,并演示了由Kapranov和Voevodsky引入的2Vec的2范畴内的显式运算和向量化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Typing tensor calculus in 2-categories (I)
To formalize calculations in linear algebra for the development of efficient algorithms and a framework suitable for functional programming languages and faster parallel computations, we adopt an approach that treats linear algebraic structures, such as matrices, as morphisms in the category of matrices, Matk. We further generalize this framework to arbitrary monoidal semiadditive categories. To extend this perspective and incorporate higher-rank matrices (tensors), we introduce the notion of semiadditive 2-categories, where matrices Tij are interpreted as 1-morphisms and tensors with four indices Tijkl as 2-morphisms. This formalization provides an index-free, typed framework for linear algebra that naturally accommodates matrices and tensors with up to four indices. Moreover, we extend the framework to monoidal semiadditive 2-categories and demonstrate explicit operations and vectorization techniques within the 2-category of 2Vec, as introduced by Kapranov and Voevodsky.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Computer Programming
Science of Computer Programming 工程技术-计算机:软件工程
CiteScore
3.80
自引率
0.00%
发文量
76
审稿时长
67 days
期刊介绍: Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design. The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice. The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including • Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software; • Design, implementation and evaluation of programming languages; • Programming environments, development tools, visualisation and animation; • Management of the development process; • Human factors in software, software for social interaction, software for social computing; • Cyber physical systems, and software for the interaction between the physical and the machine; • Software aspects of infrastructure services, system administration, and network management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信