非凸优化问题的改进黎曼混合共轭梯度法

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yun Wang, Yicong Bian, Hu Shao
{"title":"非凸优化问题的改进黎曼混合共轭梯度法","authors":"Yun Wang,&nbsp;Yicong Bian,&nbsp;Hu Shao","doi":"10.1016/j.matcom.2025.07.026","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a new Riemannian hybrid conjugate gradient method aimed at solving nonconvex optimization problems on Riemannian manifolds. We extend the modified PRP and HS methods (WYL and VHS methods) to Riemannian manifolds, and introduce a new hybrid parameter that ensures the search direction always satisfies the descent property without requiring any line search. The global convergence of the method is established under the Riemannian weak Wolfe conditions. Finally, through numerical comparison with existing Riemannian conjugate gradient methods on five test problems, we validate the effectiveness of the proposed method.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"239 ","pages":"Pages 679-695"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Riemannian hybrid conjugate gradient method for nonconvex optimization problems\",\"authors\":\"Yun Wang,&nbsp;Yicong Bian,&nbsp;Hu Shao\",\"doi\":\"10.1016/j.matcom.2025.07.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a new Riemannian hybrid conjugate gradient method aimed at solving nonconvex optimization problems on Riemannian manifolds. We extend the modified PRP and HS methods (WYL and VHS methods) to Riemannian manifolds, and introduce a new hybrid parameter that ensures the search direction always satisfies the descent property without requiring any line search. The global convergence of the method is established under the Riemannian weak Wolfe conditions. Finally, through numerical comparison with existing Riemannian conjugate gradient methods on five test problems, we validate the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"239 \",\"pages\":\"Pages 679-695\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475425002927\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425002927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

针对黎曼流形上的非凸优化问题,提出了一种新的黎曼混合共轭梯度法。我们将改进的PRP和HS方法(WYL和VHS方法)扩展到黎曼流形中,并引入了一个新的混合参数,使搜索方向始终满足下降性质,而不需要进行任何直线搜索。在黎曼弱Wolfe条件下,证明了该方法的全局收敛性。最后,通过与现有黎曼共轭梯度方法在5个测试问题上的数值比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified Riemannian hybrid conjugate gradient method for nonconvex optimization problems
This paper proposes a new Riemannian hybrid conjugate gradient method aimed at solving nonconvex optimization problems on Riemannian manifolds. We extend the modified PRP and HS methods (WYL and VHS methods) to Riemannian manifolds, and introduce a new hybrid parameter that ensures the search direction always satisfies the descent property without requiring any line search. The global convergence of the method is established under the Riemannian weak Wolfe conditions. Finally, through numerical comparison with existing Riemannian conjugate gradient methods on five test problems, we validate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信