超越简单交互:揭示生成式人工智能主体感知交互的内在机制——基于PLS-SEM和fsQCA的多模态大数据分析

IF 12.5 1区 社会学 Q1 SOCIAL ISSUES
Hao He , Shizhen Bai , Chunjia Han , Mu Yang , Weijia Fan , Brij B. Gupta
{"title":"超越简单交互:揭示生成式人工智能主体感知交互的内在机制——基于PLS-SEM和fsQCA的多模态大数据分析","authors":"Hao He ,&nbsp;Shizhen Bai ,&nbsp;Chunjia Han ,&nbsp;Mu Yang ,&nbsp;Weijia Fan ,&nbsp;Brij B. Gupta","doi":"10.1016/j.techsoc.2025.103020","DOIUrl":null,"url":null,"abstract":"<div><div>Generative Artificial Intelligence (GenAI) is increasingly being adopted across industries, yet existing literature has not fully explored the unique traits and the complex mechanism it introduces. To address this gap, this study investigates the unique characteristics of GenAI agents and their impact on user interaction behaviors. By analyzing user-generated text and AI-generated images from the Character.AI platform, we examine three key perceptual characteristics: social personalization, functional customization, and emotional affordance. Through multi-modal machine learning approaches combining Structural Topic Modeling (STM) and Facial Action Coding System (FACS), we propose the “perceived characteristics of GenAI agent-empathy-interactive willingness” (PCoGenAI-E-IW) theoretical model to explore how user perceptions transform into interactive behaviors. Furthermore, the PLS-SEM analysis and configurational approach identify 10 distinct variable combinations that influence users’ interaction willingness. The findings validate our multi-modal analytical framework while providing valuable empirical evidence for marketing strategy formulation, service experience optimization, and theoretical advancement in human-AI interaction research.</div></div>","PeriodicalId":47979,"journal":{"name":"Technology in Society","volume":"83 ","pages":"Article 103020"},"PeriodicalIF":12.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond simple interaction: Uncovering the perception-interaction intrinsic mechanism of generative AI agents—A multi-modal big data analysis with PLS-SEM and fsQCA\",\"authors\":\"Hao He ,&nbsp;Shizhen Bai ,&nbsp;Chunjia Han ,&nbsp;Mu Yang ,&nbsp;Weijia Fan ,&nbsp;Brij B. Gupta\",\"doi\":\"10.1016/j.techsoc.2025.103020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generative Artificial Intelligence (GenAI) is increasingly being adopted across industries, yet existing literature has not fully explored the unique traits and the complex mechanism it introduces. To address this gap, this study investigates the unique characteristics of GenAI agents and their impact on user interaction behaviors. By analyzing user-generated text and AI-generated images from the Character.AI platform, we examine three key perceptual characteristics: social personalization, functional customization, and emotional affordance. Through multi-modal machine learning approaches combining Structural Topic Modeling (STM) and Facial Action Coding System (FACS), we propose the “perceived characteristics of GenAI agent-empathy-interactive willingness” (PCoGenAI-E-IW) theoretical model to explore how user perceptions transform into interactive behaviors. Furthermore, the PLS-SEM analysis and configurational approach identify 10 distinct variable combinations that influence users’ interaction willingness. The findings validate our multi-modal analytical framework while providing valuable empirical evidence for marketing strategy formulation, service experience optimization, and theoretical advancement in human-AI interaction research.</div></div>\",\"PeriodicalId\":47979,\"journal\":{\"name\":\"Technology in Society\",\"volume\":\"83 \",\"pages\":\"Article 103020\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Society\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160791X25002106\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL ISSUES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Society","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160791X25002106","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL ISSUES","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能(GenAI)越来越多地被各行业采用,但现有文献并未充分探讨其独特的特征和引入的复杂机制。为了解决这一差距,本研究调查了GenAI代理的独特特征及其对用户交互行为的影响。通过分析用户生成的文本和人工智能生成的图像。在人工智能平台上,我们研究了三个关键的感知特征:社会个性化、功能定制和情感提供。通过结合结构主题建模(STM)和面部动作编码系统(FACS)的多模态机器学习方法,提出了“GenAI agent-empathy-interactive wish的感知特征”(PCoGenAI-E-IW)理论模型,探讨用户感知如何转化为交互行为。此外,PLS-SEM分析和配置方法确定了影响用户交互意愿的10个不同的变量组合。研究结果验证了我们的多模态分析框架,同时为营销策略制定、服务体验优化和人机交互研究的理论进步提供了宝贵的经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond simple interaction: Uncovering the perception-interaction intrinsic mechanism of generative AI agents—A multi-modal big data analysis with PLS-SEM and fsQCA
Generative Artificial Intelligence (GenAI) is increasingly being adopted across industries, yet existing literature has not fully explored the unique traits and the complex mechanism it introduces. To address this gap, this study investigates the unique characteristics of GenAI agents and their impact on user interaction behaviors. By analyzing user-generated text and AI-generated images from the Character.AI platform, we examine three key perceptual characteristics: social personalization, functional customization, and emotional affordance. Through multi-modal machine learning approaches combining Structural Topic Modeling (STM) and Facial Action Coding System (FACS), we propose the “perceived characteristics of GenAI agent-empathy-interactive willingness” (PCoGenAI-E-IW) theoretical model to explore how user perceptions transform into interactive behaviors. Furthermore, the PLS-SEM analysis and configurational approach identify 10 distinct variable combinations that influence users’ interaction willingness. The findings validate our multi-modal analytical framework while providing valuable empirical evidence for marketing strategy formulation, service experience optimization, and theoretical advancement in human-AI interaction research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.90
自引率
14.10%
发文量
316
审稿时长
60 days
期刊介绍: Technology in Society is a global journal dedicated to fostering discourse at the crossroads of technological change and the social, economic, business, and philosophical transformation of our world. The journal aims to provide scholarly contributions that empower decision-makers to thoughtfully and intentionally navigate the decisions shaping this dynamic landscape. A common thread across these fields is the role of technology in society, influencing economic, political, and cultural dynamics. Scholarly work in Technology in Society delves into the social forces shaping technological decisions and the societal choices regarding technology use. This encompasses scholarly and theoretical approaches (history and philosophy of science and technology, technology forecasting, economic growth, and policy, ethics), applied approaches (business innovation, technology management, legal and engineering), and developmental perspectives (technology transfer, technology assessment, and economic development). Detailed information about the journal's aims and scope on specific topics can be found in Technology in Society Briefings, accessible via our Special Issues and Article Collections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信