{"title":"利用数据稀缺的天空图像估计辐照度的视觉变压器","authors":"David Hamlyn, Sunny Chaudhary, Tasmiat Rahman","doi":"10.1016/j.egyai.2025.100560","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of diffuse horizontal irradiance (DHI) is critical for optimising photovoltaic system performance and energy forecasting yet remains challenging in regions lacking comprehensive ground-based instrumentation. Recent advancements using Vision Transformers (ViTs) trained on extensive sky image datasets have shown promise in replacing costly irradiance measurement equipment, but the scarcity of long-term, high-quality sky imagery significantly restricts practical implementation. Addressing this critical gap, this study proposes a novel dual-framework approach designed for data-scarce scenarios. First, calculated atmospheric parameters, including extraterrestrial irradiance and cyclic time encodings, are integrated to represent sky conditions without utilising any instrumentation. Next, a sequential pipeline initially predicts synthetic global horizontal irradiance (GHI) and uses it as a feature, to refine DHI estimation. Finally, a dual-parallel architecture simultaneously processes raw and overlay-enhanced fisheye sky images. Overlays are generated through unsupervised, physics-informed cloud segmentation to highlight dynamic sky features. Empirical validation is performed using data from the Chilbolton Observatory, chosen for its temperate climate and frequent cloud variability. To simulate data-scarce conditions, models are trained on a single month (e.g., January) and evaluated across a temporally disjoint, full-year test set. Under this setup, the sequential and dual-parallel frameworks achieve RMSE values within 2–3 W/m² and 1–6 W/m², respectively, of a state-of-the-art ViT trained on the complete dataset. By combining physics-informed modelling with unsupervised segmentation, the proposed method provides a scalable and cost-effective solution for DHI estimation, advancing solar resource assessment in data-constrained environments.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100560"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision transformers for estimating irradiance using data scarce sky images\",\"authors\":\"David Hamlyn, Sunny Chaudhary, Tasmiat Rahman\",\"doi\":\"10.1016/j.egyai.2025.100560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate estimation of diffuse horizontal irradiance (DHI) is critical for optimising photovoltaic system performance and energy forecasting yet remains challenging in regions lacking comprehensive ground-based instrumentation. Recent advancements using Vision Transformers (ViTs) trained on extensive sky image datasets have shown promise in replacing costly irradiance measurement equipment, but the scarcity of long-term, high-quality sky imagery significantly restricts practical implementation. Addressing this critical gap, this study proposes a novel dual-framework approach designed for data-scarce scenarios. First, calculated atmospheric parameters, including extraterrestrial irradiance and cyclic time encodings, are integrated to represent sky conditions without utilising any instrumentation. Next, a sequential pipeline initially predicts synthetic global horizontal irradiance (GHI) and uses it as a feature, to refine DHI estimation. Finally, a dual-parallel architecture simultaneously processes raw and overlay-enhanced fisheye sky images. Overlays are generated through unsupervised, physics-informed cloud segmentation to highlight dynamic sky features. Empirical validation is performed using data from the Chilbolton Observatory, chosen for its temperate climate and frequent cloud variability. To simulate data-scarce conditions, models are trained on a single month (e.g., January) and evaluated across a temporally disjoint, full-year test set. Under this setup, the sequential and dual-parallel frameworks achieve RMSE values within 2–3 W/m² and 1–6 W/m², respectively, of a state-of-the-art ViT trained on the complete dataset. By combining physics-informed modelling with unsupervised segmentation, the proposed method provides a scalable and cost-effective solution for DHI estimation, advancing solar resource assessment in data-constrained environments.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"21 \",\"pages\":\"Article 100560\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825000928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Vision transformers for estimating irradiance using data scarce sky images
Accurate estimation of diffuse horizontal irradiance (DHI) is critical for optimising photovoltaic system performance and energy forecasting yet remains challenging in regions lacking comprehensive ground-based instrumentation. Recent advancements using Vision Transformers (ViTs) trained on extensive sky image datasets have shown promise in replacing costly irradiance measurement equipment, but the scarcity of long-term, high-quality sky imagery significantly restricts practical implementation. Addressing this critical gap, this study proposes a novel dual-framework approach designed for data-scarce scenarios. First, calculated atmospheric parameters, including extraterrestrial irradiance and cyclic time encodings, are integrated to represent sky conditions without utilising any instrumentation. Next, a sequential pipeline initially predicts synthetic global horizontal irradiance (GHI) and uses it as a feature, to refine DHI estimation. Finally, a dual-parallel architecture simultaneously processes raw and overlay-enhanced fisheye sky images. Overlays are generated through unsupervised, physics-informed cloud segmentation to highlight dynamic sky features. Empirical validation is performed using data from the Chilbolton Observatory, chosen for its temperate climate and frequent cloud variability. To simulate data-scarce conditions, models are trained on a single month (e.g., January) and evaluated across a temporally disjoint, full-year test set. Under this setup, the sequential and dual-parallel frameworks achieve RMSE values within 2–3 W/m² and 1–6 W/m², respectively, of a state-of-the-art ViT trained on the complete dataset. By combining physics-informed modelling with unsupervised segmentation, the proposed method provides a scalable and cost-effective solution for DHI estimation, advancing solar resource assessment in data-constrained environments.