非线性量子谐振子的准周期解

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Jianjun Liu , Caihong Qi , Guanghua Shi
{"title":"非线性量子谐振子的准周期解","authors":"Jianjun Liu ,&nbsp;Caihong Qi ,&nbsp;Guanghua Shi","doi":"10.1016/j.physd.2025.134846","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the nonlinear quantum harmonic oscillator equation <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi><mo>.</mo></mrow></math></span></span></span>It is proved that there are Cantor families of 2-dimensional elliptic invariant tori, and thus quasi-periodic solutions for the above equation. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form. Compared with previous KAM results for quantum harmonic oscillator, the novelty lies in the above equation not containing external parameters. This gives rise to the difficulty associated with complete resonance of frequencies.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134846"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-periodic solutions for the nonlinear quantum harmonic oscillator\",\"authors\":\"Jianjun Liu ,&nbsp;Caihong Qi ,&nbsp;Guanghua Shi\",\"doi\":\"10.1016/j.physd.2025.134846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the nonlinear quantum harmonic oscillator equation <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi><mo>.</mo></mrow></math></span></span></span>It is proved that there are Cantor families of 2-dimensional elliptic invariant tori, and thus quasi-periodic solutions for the above equation. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form. Compared with previous KAM results for quantum harmonic oscillator, the novelty lies in the above equation not containing external parameters. This gives rise to the difficulty associated with complete resonance of frequencies.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134846\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003239\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003239","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究非线性量子谐振子方程iut=−uxx+x2u+|u|2u,x∈R。证明了二维椭圆不变环面存在Cantor族,从而证明了上述方程的拟周期解。该证明基于无限维KAM理论和部分Birkhoff范式。与以往量子谐振子的KAM结果相比,新颖性在于上述方程不包含外部参数。这引起了与频率完全共振相关的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-periodic solutions for the nonlinear quantum harmonic oscillator
This paper is concerned with the nonlinear quantum harmonic oscillator equation iut=uxx+x2u+|u|2u,xR.It is proved that there are Cantor families of 2-dimensional elliptic invariant tori, and thus quasi-periodic solutions for the above equation. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form. Compared with previous KAM results for quantum harmonic oscillator, the novelty lies in the above equation not containing external parameters. This gives rise to the difficulty associated with complete resonance of frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信