基于混合计算和人工神经网络的萨特比纳米流体在拉伸表面的传热和生物对流分析

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Waqas Ashraf , M. Israr Ur Rehman , Zhoushun Zheng , Aamir Hamid , Haitao Qi
{"title":"基于混合计算和人工神经网络的萨特比纳米流体在拉伸表面的传热和生物对流分析","authors":"M. Waqas Ashraf ,&nbsp;M. Israr Ur Rehman ,&nbsp;Zhoushun Zheng ,&nbsp;Aamir Hamid ,&nbsp;Haitao Qi","doi":"10.1016/j.chaos.2025.116942","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the application of computational fluid dynamics in conjunction with artificial neural networks to analyze the heat and mass transfer characteristics of bioconvective Sutterby nanofluid over a two-dimensional stretching sheet. The Darcy-Forchheimer model evaluates porous media resistance in the presence of chemical reactions. By applying suitable similarity transformations, the governing equations are transformed into a non-dimensional form and solved numerically using the bvp4c approach. Additionally, an ANN model is developed and trained using the Levenberg–Marquardt Backpropagation algorithm (LMBP) to accurately predict skin friction, Nusselt number, Sherwood number, and the concentration of motile microorganisms. It can be concluded that the Darcy and Deborah numbers exhibit a similar increasing trend within the velocity profile. The Brownian motion parameter has the opposite effect on thermal distribution and the mass transport rate. The ANN predictions and numerical results for heat and mass transfer showed excellent agreement. The optimized ANN model accurately predicted critical parameters with a variance of <span><math><mo>±</mo><mn>2</mn><mo>%</mo></math></span> and a maximum error of <span><math><mn>1.8</mn><mo>%</mo></math></span> in all scenarios. This demonstrates the efficacy of the hybrid computational and ANN framework in simulating the complex flow and heat transfer properties of nanofluids on stretched surfaces.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116942"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid computational and ANN-based analysis of heat transfer and bioconvection in Sutterby nanofluid flow across a stretched surface\",\"authors\":\"M. Waqas Ashraf ,&nbsp;M. Israr Ur Rehman ,&nbsp;Zhoushun Zheng ,&nbsp;Aamir Hamid ,&nbsp;Haitao Qi\",\"doi\":\"10.1016/j.chaos.2025.116942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the application of computational fluid dynamics in conjunction with artificial neural networks to analyze the heat and mass transfer characteristics of bioconvective Sutterby nanofluid over a two-dimensional stretching sheet. The Darcy-Forchheimer model evaluates porous media resistance in the presence of chemical reactions. By applying suitable similarity transformations, the governing equations are transformed into a non-dimensional form and solved numerically using the bvp4c approach. Additionally, an ANN model is developed and trained using the Levenberg–Marquardt Backpropagation algorithm (LMBP) to accurately predict skin friction, Nusselt number, Sherwood number, and the concentration of motile microorganisms. It can be concluded that the Darcy and Deborah numbers exhibit a similar increasing trend within the velocity profile. The Brownian motion parameter has the opposite effect on thermal distribution and the mass transport rate. The ANN predictions and numerical results for heat and mass transfer showed excellent agreement. The optimized ANN model accurately predicted critical parameters with a variance of <span><math><mo>±</mo><mn>2</mn><mo>%</mo></math></span> and a maximum error of <span><math><mn>1.8</mn><mo>%</mo></math></span> in all scenarios. This demonstrates the efficacy of the hybrid computational and ANN framework in simulating the complex flow and heat transfer properties of nanofluids on stretched surfaces.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116942\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009555\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009555","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究将计算流体力学与人工神经网络相结合,分析了生物对流萨特比纳米流体在二维拉伸片上的传热传质特性。Darcy-Forchheimer模型评估了存在化学反应时多孔介质的阻力。通过适当的相似变换,将控制方程转化为无量纲形式,并采用bvp4c方法进行数值求解。此外,利用Levenberg-Marquardt反向传播算法(LMBP)建立并训练了一个人工神经网络模型,以准确预测皮肤摩擦、努塞尔数、舍伍德数和活动微生物的浓度。可以得出结论,达西数和黛博拉数在速度剖面内表现出相似的增加趋势。布朗运动参数对热分布和质量输运率有相反的影响。人工神经网络对传热传质过程的预测结果与数值结果非常吻合。优化后的人工神经网络模型在所有场景下准确预测关键参数,方差为±2%,最大误差为1.8%。这证明了混合计算和人工神经网络框架在模拟纳米流体在拉伸表面上的复杂流动和传热特性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid computational and ANN-based analysis of heat transfer and bioconvection in Sutterby nanofluid flow across a stretched surface
This study presents the application of computational fluid dynamics in conjunction with artificial neural networks to analyze the heat and mass transfer characteristics of bioconvective Sutterby nanofluid over a two-dimensional stretching sheet. The Darcy-Forchheimer model evaluates porous media resistance in the presence of chemical reactions. By applying suitable similarity transformations, the governing equations are transformed into a non-dimensional form and solved numerically using the bvp4c approach. Additionally, an ANN model is developed and trained using the Levenberg–Marquardt Backpropagation algorithm (LMBP) to accurately predict skin friction, Nusselt number, Sherwood number, and the concentration of motile microorganisms. It can be concluded that the Darcy and Deborah numbers exhibit a similar increasing trend within the velocity profile. The Brownian motion parameter has the opposite effect on thermal distribution and the mass transport rate. The ANN predictions and numerical results for heat and mass transfer showed excellent agreement. The optimized ANN model accurately predicted critical parameters with a variance of ±2% and a maximum error of 1.8% in all scenarios. This demonstrates the efficacy of the hybrid computational and ANN framework in simulating the complex flow and heat transfer properties of nanofluids on stretched surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信