每一个量子测量结果的守恒定律

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-29 DOI:10.22331/q-2025-07-29-1815
Daniel Collins, Sandu Popescu
{"title":"每一个量子测量结果的守恒定律","authors":"Daniel Collins, Sandu Popescu","doi":"10.22331/q-2025-07-29-1815","DOIUrl":null,"url":null,"abstract":"In the paradigmatic example of quantum measurements, whenever one measures a system which starts in a superposition of two states of a conserved quantity, it jumps to one of the two states, implying different final values for the quantity that should have been conserved. The standard law of conservation for quantum mechanics handles this jump by stating only that the total distribution of the conserved quantity over repeated measurements is unchanged, but states nothing about individual cases. Here however we show that one can go beyond this and have conservation in each individual instance. We made our arguments in the case of angular momentum of a particle on a circle, where many technicalities simplify, and bring arguments to show that this holds in full generality. Hence we argue that the conservation law in quantum mechanics should be rewritten, to go beyond its hitherto statistical formulation, to state that the total of a conserved quantity is unchanged in every individual measurement outcome. As a further crucial element, we show that conservation can be localised at the level of the system of interest and its relevant frame of reference, and is independent on any assumptions on the distribution of the conserved quantity over the entire universe.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"97 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation Laws For Every Quantum Measurement Outcome\",\"authors\":\"Daniel Collins, Sandu Popescu\",\"doi\":\"10.22331/q-2025-07-29-1815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paradigmatic example of quantum measurements, whenever one measures a system which starts in a superposition of two states of a conserved quantity, it jumps to one of the two states, implying different final values for the quantity that should have been conserved. The standard law of conservation for quantum mechanics handles this jump by stating only that the total distribution of the conserved quantity over repeated measurements is unchanged, but states nothing about individual cases. Here however we show that one can go beyond this and have conservation in each individual instance. We made our arguments in the case of angular momentum of a particle on a circle, where many technicalities simplify, and bring arguments to show that this holds in full generality. Hence we argue that the conservation law in quantum mechanics should be rewritten, to go beyond its hitherto statistical formulation, to state that the total of a conserved quantity is unchanged in every individual measurement outcome. As a further crucial element, we show that conservation can be localised at the level of the system of interest and its relevant frame of reference, and is independent on any assumptions on the distribution of the conserved quantity over the entire universe.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-29-1815\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-29-1815","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在量子测量的典型例子中,每当一个人测量一个系统时,它开始于一个守恒量的两个状态的叠加,它就会跳到两个状态中的一个,这意味着应该守恒的量的最终值不同。量子力学的标准守恒定律处理这种跳跃时,只说明了重复测量中守恒量的总分布是不变的,但没有说明个别情况。然而,在这里,我们表明,一个人可以超越这一点,在每个单独的实例中都有守恒。我们在一个圆上的粒子的角动量的情况下做了我们的论证,在那里许多技术上简化了,并提出论证来证明这是完全普遍的。因此,我们认为量子力学中的守恒定律应该被重写,以超越其迄今为止的统计公式,以说明在每个单独的测量结果中守恒量的总和是不变的。作为进一步的关键因素,我们表明守恒可以定位于感兴趣的系统及其相关参照系的水平,并且独立于对整个宇宙中守恒量分布的任何假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conservation Laws For Every Quantum Measurement Outcome
In the paradigmatic example of quantum measurements, whenever one measures a system which starts in a superposition of two states of a conserved quantity, it jumps to one of the two states, implying different final values for the quantity that should have been conserved. The standard law of conservation for quantum mechanics handles this jump by stating only that the total distribution of the conserved quantity over repeated measurements is unchanged, but states nothing about individual cases. Here however we show that one can go beyond this and have conservation in each individual instance. We made our arguments in the case of angular momentum of a particle on a circle, where many technicalities simplify, and bring arguments to show that this holds in full generality. Hence we argue that the conservation law in quantum mechanics should be rewritten, to go beyond its hitherto statistical formulation, to state that the total of a conserved quantity is unchanged in every individual measurement outcome. As a further crucial element, we show that conservation can be localised at the level of the system of interest and its relevant frame of reference, and is independent on any assumptions on the distribution of the conserved quantity over the entire universe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信