下体负压时不同体位光容积描记图特征指数的比较。

IF 2.7 4区 医学 Q3 BIOPHYSICS
Shrikant Chand, Neng-Tai Chiu, Yun-Hsin Chou, Aymen Alian, Kirk Shelley, Hau-Tieng Wu
{"title":"下体负压时不同体位光容积描记图特征指数的比较。","authors":"Shrikant Chand, Neng-Tai Chiu, Yun-Hsin Chou, Aymen Alian, Kirk Shelley, Hau-Tieng Wu","doi":"10.1088/1361-6579/adf489","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Various time domain features, including dicrotic notch (<b>dic</b>), in photoplethysmogram (PPG), and the pulse transit time (PTT) determined using the simultaneously recorded electrocardiogram (ECG), are believed to have a critical role with many potential clinical applications. However, the dependence of these parameters on PPG sensor location is less well known.<i>Approach.</i>Three transmissive pulse oximetry probes (Xhale) were put simultaneously on the ear, nose, and finger of 36 healthy volunteers in the lower body negative pressure (LBNP) experiment. Various features of the recorded PPG signals were analyzed across different LBNP phases for each location. Simultaneously recorded finger PPG and ECG (Nellcor) were used to assess the dependence of PTT on PPG sensor location.<i>Main results.</i>PPG signal quality varies by measurement site, with nasal PPG showing the highest quality and ear PPG the lowest. Except pulse rate (PR), most feature-related indices differ across sites. Specifically, the ratios of detectable<b>dic</b>vary, highest in finger PPG and lowest in nasal PPG. When<b>dic</b>is detectable, the<i>e</i>point and<b>dic</b>are significantly different. PR variability indices and PTT also vary by location, though no clear conclusions can be drawn about PTT behavior across different LBNP phases.<i>Significance.</i>Various indices derived from PPG signals in a well-controlled study environment are influenced by sensor placement. Although not all possible indices are examined, the findings clearly illustrate the sensitivity of signal features to measurement location. While these results may not be directly generalizable to routine clinical settings, caution is warranted when extrapolating findings from one PPG site to another. This consideration is especially important in the digital health era, where mobile devices with PPG sensors are increasingly deployed at diverse body sites.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of feature-based indices derived from photoplethysmogram recorded from different body locations during lower body negative pressure.\",\"authors\":\"Shrikant Chand, Neng-Tai Chiu, Yun-Hsin Chou, Aymen Alian, Kirk Shelley, Hau-Tieng Wu\",\"doi\":\"10.1088/1361-6579/adf489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Various time domain features, including dicrotic notch (<b>dic</b>), in photoplethysmogram (PPG), and the pulse transit time (PTT) determined using the simultaneously recorded electrocardiogram (ECG), are believed to have a critical role with many potential clinical applications. However, the dependence of these parameters on PPG sensor location is less well known.<i>Approach.</i>Three transmissive pulse oximetry probes (Xhale) were put simultaneously on the ear, nose, and finger of 36 healthy volunteers in the lower body negative pressure (LBNP) experiment. Various features of the recorded PPG signals were analyzed across different LBNP phases for each location. Simultaneously recorded finger PPG and ECG (Nellcor) were used to assess the dependence of PTT on PPG sensor location.<i>Main results.</i>PPG signal quality varies by measurement site, with nasal PPG showing the highest quality and ear PPG the lowest. Except pulse rate (PR), most feature-related indices differ across sites. Specifically, the ratios of detectable<b>dic</b>vary, highest in finger PPG and lowest in nasal PPG. When<b>dic</b>is detectable, the<i>e</i>point and<b>dic</b>are significantly different. PR variability indices and PTT also vary by location, though no clear conclusions can be drawn about PTT behavior across different LBNP phases.<i>Significance.</i>Various indices derived from PPG signals in a well-controlled study environment are influenced by sensor placement. Although not all possible indices are examined, the findings clearly illustrate the sensitivity of signal features to measurement location. While these results may not be directly generalizable to routine clinical settings, caution is warranted when extrapolating findings from one PPG site to another. This consideration is especially important in the digital health era, where mobile devices with PPG sensors are increasingly deployed at diverse body sites.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/adf489\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adf489","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:光容积描记图(PPG)中的各种时域特征,包括双向切迹(dic),以及通过同时记录的心电图(ECG)确定的脉冲传递时间(PTT),被认为在许多潜在的临床应用中具有关键作用。方法:将3个透射式脉搏血氧仪(Xhale)同时放置在36名健康志愿者的耳、鼻和手指上,进行下体负压(LBNP)实验。在每个位置的不同LBNP相中,分析了记录的PPG信号的各种特征。主要结果:PPG信号质量随测量部位的不同而不同,鼻部PPG信号质量最高,耳部PPG信号质量最低。除了脉搏率(PR)外,大多数与特征相关的指标在不同的部位是不同的。具体来说,可检测到的dic比例各不相同,手指PPG最高,鼻腔PPG最低。当dic可检测时,e点与dic有显著差异。脉搏变异性指数和PTT也随位置的不同而变化,尽管没有明确的结论可以得出PTT在不同LBNP相中的行为。意义:在控制良好的研究环境中,从PPG信号中得出的各种指标受到传感器放置的影响。虽然并非所有可能的指标都被检查,但研究结果清楚地说明了信号特征对测量位置的敏感性。虽然这些结果可能不能直接推广到常规临床环境,但在将一个PPG部位的发现推断到另一个PPG部位时,需要谨慎。在数字健康时代,这一考虑尤其重要,因为带有PPG传感器的移动设备越来越多地部署在不同的身体部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of feature-based indices derived from photoplethysmogram recorded from different body locations during lower body negative pressure.

Objective.Various time domain features, including dicrotic notch (dic), in photoplethysmogram (PPG), and the pulse transit time (PTT) determined using the simultaneously recorded electrocardiogram (ECG), are believed to have a critical role with many potential clinical applications. However, the dependence of these parameters on PPG sensor location is less well known.Approach.Three transmissive pulse oximetry probes (Xhale) were put simultaneously on the ear, nose, and finger of 36 healthy volunteers in the lower body negative pressure (LBNP) experiment. Various features of the recorded PPG signals were analyzed across different LBNP phases for each location. Simultaneously recorded finger PPG and ECG (Nellcor) were used to assess the dependence of PTT on PPG sensor location.Main results.PPG signal quality varies by measurement site, with nasal PPG showing the highest quality and ear PPG the lowest. Except pulse rate (PR), most feature-related indices differ across sites. Specifically, the ratios of detectabledicvary, highest in finger PPG and lowest in nasal PPG. Whendicis detectable, theepoint anddicare significantly different. PR variability indices and PTT also vary by location, though no clear conclusions can be drawn about PTT behavior across different LBNP phases.Significance.Various indices derived from PPG signals in a well-controlled study environment are influenced by sensor placement. Although not all possible indices are examined, the findings clearly illustrate the sensitivity of signal features to measurement location. While these results may not be directly generalizable to routine clinical settings, caution is warranted when extrapolating findings from one PPG site to another. This consideration is especially important in the digital health era, where mobile devices with PPG sensors are increasingly deployed at diverse body sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信