Takahiro Tsuno, Jinghe Li, Kuniyuki Nishiyama, Yuka Imamura Kawasawa, Ryota Inoue, Esther Ong Yajima, Akira Nishiyama, Shigeharu G Yabe, Tatsuya Kin, Hitoshi Okochi, Tomohiko Tamura, A M James Shapiro, Seiichi Oyadomari, Tadahiro Kitamura, Yasuo Terauchi, Jun Shirakawa
{"title":"依米霉素抑制胰高血糖素分泌,诱导α细胞身份丧失。","authors":"Takahiro Tsuno, Jinghe Li, Kuniyuki Nishiyama, Yuka Imamura Kawasawa, Ryota Inoue, Esther Ong Yajima, Akira Nishiyama, Shigeharu G Yabe, Tatsuya Kin, Hitoshi Okochi, Tomohiko Tamura, A M James Shapiro, Seiichi Oyadomari, Tadahiro Kitamura, Yasuo Terauchi, Jun Shirakawa","doi":"10.1016/j.xcrm.2025.102254","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulated α cell function contributes to the development of diabetes. In this study, we find that treatment with imeglimin, an antidiabetic drug, prevents glucagon release and induces a loss of α cell identity through direct action on α cells. Mechanistically, imeglimin reduces Gsα expression to inhibit the exchange protein directly activated by cyclic adenosine monophosphate 2 (EPAC2)-mediated secretion of glucagon induced by low glucose, gastric inhibitory polypeptide (GIP), or adrenaline in an insulin-independent manner. Imeglimin also attenuates α cell Ca<sup>2+</sup> oscillations. MafB expression is downregulated by imeglimin to induce α cell dedifferentiation. In addition, imeglimin upregulates C/EBP homologous protein (CHOP) expression, which partly contributes to the reduction in Gsα and MafB expression to reduce glucagon secretion and induce α cell reprogramming without altering protein translation. These pleiotropic effects of imeglimin on glucagon secretion and α cell identity can be recapitulated in mouse models of diabetes in vivo. These data suggest that the imeglimin-mediated regulation of α cell plasticity, particularly via glucagon suppression, may contribute to glucose homeostasis.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102254"},"PeriodicalIF":10.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12432361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Imeglimin suppresses glucagon secretion and induces a loss of α cell identity.\",\"authors\":\"Takahiro Tsuno, Jinghe Li, Kuniyuki Nishiyama, Yuka Imamura Kawasawa, Ryota Inoue, Esther Ong Yajima, Akira Nishiyama, Shigeharu G Yabe, Tatsuya Kin, Hitoshi Okochi, Tomohiko Tamura, A M James Shapiro, Seiichi Oyadomari, Tadahiro Kitamura, Yasuo Terauchi, Jun Shirakawa\",\"doi\":\"10.1016/j.xcrm.2025.102254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulated α cell function contributes to the development of diabetes. In this study, we find that treatment with imeglimin, an antidiabetic drug, prevents glucagon release and induces a loss of α cell identity through direct action on α cells. Mechanistically, imeglimin reduces Gsα expression to inhibit the exchange protein directly activated by cyclic adenosine monophosphate 2 (EPAC2)-mediated secretion of glucagon induced by low glucose, gastric inhibitory polypeptide (GIP), or adrenaline in an insulin-independent manner. Imeglimin also attenuates α cell Ca<sup>2+</sup> oscillations. MafB expression is downregulated by imeglimin to induce α cell dedifferentiation. In addition, imeglimin upregulates C/EBP homologous protein (CHOP) expression, which partly contributes to the reduction in Gsα and MafB expression to reduce glucagon secretion and induce α cell reprogramming without altering protein translation. These pleiotropic effects of imeglimin on glucagon secretion and α cell identity can be recapitulated in mouse models of diabetes in vivo. These data suggest that the imeglimin-mediated regulation of α cell plasticity, particularly via glucagon suppression, may contribute to glucose homeostasis.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102254\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12432361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102254\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102254","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Imeglimin suppresses glucagon secretion and induces a loss of α cell identity.
Dysregulated α cell function contributes to the development of diabetes. In this study, we find that treatment with imeglimin, an antidiabetic drug, prevents glucagon release and induces a loss of α cell identity through direct action on α cells. Mechanistically, imeglimin reduces Gsα expression to inhibit the exchange protein directly activated by cyclic adenosine monophosphate 2 (EPAC2)-mediated secretion of glucagon induced by low glucose, gastric inhibitory polypeptide (GIP), or adrenaline in an insulin-independent manner. Imeglimin also attenuates α cell Ca2+ oscillations. MafB expression is downregulated by imeglimin to induce α cell dedifferentiation. In addition, imeglimin upregulates C/EBP homologous protein (CHOP) expression, which partly contributes to the reduction in Gsα and MafB expression to reduce glucagon secretion and induce α cell reprogramming without altering protein translation. These pleiotropic effects of imeglimin on glucagon secretion and α cell identity can be recapitulated in mouse models of diabetes in vivo. These data suggest that the imeglimin-mediated regulation of α cell plasticity, particularly via glucagon suppression, may contribute to glucose homeostasis.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.