{"title":"阴离子表面活性剂荧光发射光谱的少次学习分类方法。","authors":"Hanyang Ning, Miao Ma, Zhiwei Shi, Liping Ding","doi":"10.1007/s00894-025-06440-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>The unregulated use of anionic surfactants poses significant environmental risks, necessitating methods for their rapid and accurate identification. While fluorescence spectroscopy is a powerful tool, its application faces a critical challenge: existing analytical strategies either rely on complex and costly sensor arrays to acquire rich data, or they apply traditional machine learning to simpler, single-spectrum data, which often requires pre-processing steps like PCA that risk information loss. Furthermore, standard deep learning approaches are often unsuitable due to the high cost and effort required to acquire the large datasets they need for training. To address this gap, we propose an end-to-end, few-shot learning method (CNN-PN) for the classification of anionic surfactant fluorescence emission spectra. Our approach leverages a one-dimensional convolutional neural network (1D-CNN) to automatically extract features from the full, raw spectrum, thus avoiding lossy pre-processing. It then employs a prototypical network to perform robust, similarity-based classification, a strategy highly effective for limited sample sizes. We validated our method on our FESS dataset (53 surfactant categories) and a public metal oxides dataset. In our experiments, the CNN-PN method consistently outperformed traditional techniques like LDA, SVM, and KNN. It achieved 76.36% accuracy when trained with only a single sample per class, 95.90% in a multi-sample scenario on our FESS dataset, and 84.86% on the public dataset. This work provides a powerful and data-efficient framework for spectral analysis, facilitating the development of more accessible and rapid fluorescence sensing technologies, particularly for applications where data collection is expensive or constrained.</p><p><strong>Methods: </strong>A few-shot learning classification method based on prototypical networks was employed. A one-dimensional convolutional neural network (1D-CNN) was utilized to extract spectral features from the full fluorescence emission spectra. Classification was then performed within the prototypical network framework using Euclidean distance as the similarity metric between features in the learned latent space. The Python programming language and the PyTorch library were used for all model implementations and data analysis.</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 8","pages":"218"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification method for fluorescence emission spectra of anionic surfactants with few-shot learning.\",\"authors\":\"Hanyang Ning, Miao Ma, Zhiwei Shi, Liping Ding\",\"doi\":\"10.1007/s00894-025-06440-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>The unregulated use of anionic surfactants poses significant environmental risks, necessitating methods for their rapid and accurate identification. While fluorescence spectroscopy is a powerful tool, its application faces a critical challenge: existing analytical strategies either rely on complex and costly sensor arrays to acquire rich data, or they apply traditional machine learning to simpler, single-spectrum data, which often requires pre-processing steps like PCA that risk information loss. Furthermore, standard deep learning approaches are often unsuitable due to the high cost and effort required to acquire the large datasets they need for training. To address this gap, we propose an end-to-end, few-shot learning method (CNN-PN) for the classification of anionic surfactant fluorescence emission spectra. Our approach leverages a one-dimensional convolutional neural network (1D-CNN) to automatically extract features from the full, raw spectrum, thus avoiding lossy pre-processing. It then employs a prototypical network to perform robust, similarity-based classification, a strategy highly effective for limited sample sizes. We validated our method on our FESS dataset (53 surfactant categories) and a public metal oxides dataset. In our experiments, the CNN-PN method consistently outperformed traditional techniques like LDA, SVM, and KNN. It achieved 76.36% accuracy when trained with only a single sample per class, 95.90% in a multi-sample scenario on our FESS dataset, and 84.86% on the public dataset. This work provides a powerful and data-efficient framework for spectral analysis, facilitating the development of more accessible and rapid fluorescence sensing technologies, particularly for applications where data collection is expensive or constrained.</p><p><strong>Methods: </strong>A few-shot learning classification method based on prototypical networks was employed. A one-dimensional convolutional neural network (1D-CNN) was utilized to extract spectral features from the full fluorescence emission spectra. Classification was then performed within the prototypical network framework using Euclidean distance as the similarity metric between features in the learned latent space. The Python programming language and the PyTorch library were used for all model implementations and data analysis.</p>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 8\",\"pages\":\"218\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00894-025-06440-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00894-025-06440-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A classification method for fluorescence emission spectra of anionic surfactants with few-shot learning.
Context: The unregulated use of anionic surfactants poses significant environmental risks, necessitating methods for their rapid and accurate identification. While fluorescence spectroscopy is a powerful tool, its application faces a critical challenge: existing analytical strategies either rely on complex and costly sensor arrays to acquire rich data, or they apply traditional machine learning to simpler, single-spectrum data, which often requires pre-processing steps like PCA that risk information loss. Furthermore, standard deep learning approaches are often unsuitable due to the high cost and effort required to acquire the large datasets they need for training. To address this gap, we propose an end-to-end, few-shot learning method (CNN-PN) for the classification of anionic surfactant fluorescence emission spectra. Our approach leverages a one-dimensional convolutional neural network (1D-CNN) to automatically extract features from the full, raw spectrum, thus avoiding lossy pre-processing. It then employs a prototypical network to perform robust, similarity-based classification, a strategy highly effective for limited sample sizes. We validated our method on our FESS dataset (53 surfactant categories) and a public metal oxides dataset. In our experiments, the CNN-PN method consistently outperformed traditional techniques like LDA, SVM, and KNN. It achieved 76.36% accuracy when trained with only a single sample per class, 95.90% in a multi-sample scenario on our FESS dataset, and 84.86% on the public dataset. This work provides a powerful and data-efficient framework for spectral analysis, facilitating the development of more accessible and rapid fluorescence sensing technologies, particularly for applications where data collection is expensive or constrained.
Methods: A few-shot learning classification method based on prototypical networks was employed. A one-dimensional convolutional neural network (1D-CNN) was utilized to extract spectral features from the full fluorescence emission spectra. Classification was then performed within the prototypical network framework using Euclidean distance as the similarity metric between features in the learned latent space. The Python programming language and the PyTorch library were used for all model implementations and data analysis.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.