{"title":"利用CFD模型表征体积对植物细胞悬浮液流体动力学的影响","authors":"Vidya Muthulakshmi Manickavasagam, Kameswararao Anupindi, Nirav Bhatt, Smita Srivastava","doi":"10.1002/biot.70086","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biomass productivities in shake flasks are often not reproduced in bioreactors for plant cell cultures due to change in hydrodynamics. Considering shake flask biomass productivity as benchmark, this study employs shake flask geometries as a model system to understand hydrodynamic changes with volume and identify suitable scale-up criteria for plant cell cultivations, with minimal cost and time, given their slow growth time, using computational fluid dynamics (CFD) and experiments. Cultivation of <i>Viola odorata</i> cells in increasing flask volumes (100–3000 mL) revealed no significant change in biomass productivity. CFD analysis indicated that volumetric oxygen mass transfer coefficient (<i>k<sub>L</sub>a</i>), increased up to 1000 mL and then decreased, due to saturation of energy dissipation rates (<i>k<sub>L</sub></i> is a function of energy dissipation rates) and decreasing interfacial area. The unaffected biomass concentration, despite decreased <i>k<sub>L</sub>a</i>, suggests that <i>k<sub>L</sub>a</i> may not be a significant scale-up parameter. Instead, maintaining a constant shear environment, indicated by power per unit volume saturation at higher volumes, was proposed as a suitable scale-up parameter for <i>V. odorata</i> cell cultivation in bioreactors. Moreover, the decrease in velocity difference between fluid layers with increased flask volume, indicated that minimizing velocity gradients in bioreactors could help achieve shake flask biomass productivity.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the Effect of Volume on Hydrodynamics of Plant Cell Suspensions Using CFD Modeling\",\"authors\":\"Vidya Muthulakshmi Manickavasagam, Kameswararao Anupindi, Nirav Bhatt, Smita Srivastava\",\"doi\":\"10.1002/biot.70086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Biomass productivities in shake flasks are often not reproduced in bioreactors for plant cell cultures due to change in hydrodynamics. Considering shake flask biomass productivity as benchmark, this study employs shake flask geometries as a model system to understand hydrodynamic changes with volume and identify suitable scale-up criteria for plant cell cultivations, with minimal cost and time, given their slow growth time, using computational fluid dynamics (CFD) and experiments. Cultivation of <i>Viola odorata</i> cells in increasing flask volumes (100–3000 mL) revealed no significant change in biomass productivity. CFD analysis indicated that volumetric oxygen mass transfer coefficient (<i>k<sub>L</sub>a</i>), increased up to 1000 mL and then decreased, due to saturation of energy dissipation rates (<i>k<sub>L</sub></i> is a function of energy dissipation rates) and decreasing interfacial area. The unaffected biomass concentration, despite decreased <i>k<sub>L</sub>a</i>, suggests that <i>k<sub>L</sub>a</i> may not be a significant scale-up parameter. Instead, maintaining a constant shear environment, indicated by power per unit volume saturation at higher volumes, was proposed as a suitable scale-up parameter for <i>V. odorata</i> cell cultivation in bioreactors. Moreover, the decrease in velocity difference between fluid layers with increased flask volume, indicated that minimizing velocity gradients in bioreactors could help achieve shake flask biomass productivity.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"20 7\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.70086\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70086","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Characterizing the Effect of Volume on Hydrodynamics of Plant Cell Suspensions Using CFD Modeling
Biomass productivities in shake flasks are often not reproduced in bioreactors for plant cell cultures due to change in hydrodynamics. Considering shake flask biomass productivity as benchmark, this study employs shake flask geometries as a model system to understand hydrodynamic changes with volume and identify suitable scale-up criteria for plant cell cultivations, with minimal cost and time, given their slow growth time, using computational fluid dynamics (CFD) and experiments. Cultivation of Viola odorata cells in increasing flask volumes (100–3000 mL) revealed no significant change in biomass productivity. CFD analysis indicated that volumetric oxygen mass transfer coefficient (kLa), increased up to 1000 mL and then decreased, due to saturation of energy dissipation rates (kL is a function of energy dissipation rates) and decreasing interfacial area. The unaffected biomass concentration, despite decreased kLa, suggests that kLa may not be a significant scale-up parameter. Instead, maintaining a constant shear environment, indicated by power per unit volume saturation at higher volumes, was proposed as a suitable scale-up parameter for V. odorata cell cultivation in bioreactors. Moreover, the decrease in velocity difference between fluid layers with increased flask volume, indicated that minimizing velocity gradients in bioreactors could help achieve shake flask biomass productivity.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.