在圆孔中安装方钉:准球形分子的参数化,利用米氏势†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Gustavo Chaparro and Erich A. Müller
{"title":"在圆孔中安装方钉:准球形分子的参数化,利用米氏势†","authors":"Gustavo Chaparro and Erich A. Müller","doi":"10.1039/D5ME00048C","DOIUrl":null,"url":null,"abstract":"<p >The parameterisation of the force field of a molecular system is essential for accurately describing and predicting macroscopic thermophysical properties. Here, we discuss three approaches to obtain the molecular parameters (<em>σ</em>, <em>ε</em>, and <em>λ</em><small><sub>r</sub></small>) of the Mie force field from experimental data for quasi-spherical molecules. The first approach is based on a classical strategy that considers fitting only to vapour–liquid equilibria data. The second approach entails a simultaneous fit to equilibrium properties and liquid shear viscosity. Finally, a third approach incorporates solid–fluid equilibrium data. The fitting procedure is facilitated by the use of recently published machine-learned equations of state for the Mie particle, which allows the prediction of thermophysical properties given a set of molecular parameters. The goodness-of-fit is assessed based on the deviations between calculated and experimental data. We also assess the behaviour of the thermal conductivity and speed of sound of the saturated liquid phase to evaluate the transferability of the molecular parameters to properties not used in the parametrisation. Apart from the singular case of monoatomic molecules, no single set of parameters can simultaneously describe the fluid phase equilibria, transport, and solid transition properties of quasi-spherical molecules. This result highlights the limitations of the Mie potential for modelling the thermophysical properties of small molecules. Therefore, a compromise must be made, either to achieve a good description of a specific set of properties or to attain modest accuracy across all phase space.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 620-634"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/me/d5me00048c?page=search","citationCount":"0","resultStr":"{\"title\":\"Fitting a square peg in a round hole: parameterisation of quasi-spherical molecules employing the Mie potential†\",\"authors\":\"Gustavo Chaparro and Erich A. Müller\",\"doi\":\"10.1039/D5ME00048C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The parameterisation of the force field of a molecular system is essential for accurately describing and predicting macroscopic thermophysical properties. Here, we discuss three approaches to obtain the molecular parameters (<em>σ</em>, <em>ε</em>, and <em>λ</em><small><sub>r</sub></small>) of the Mie force field from experimental data for quasi-spherical molecules. The first approach is based on a classical strategy that considers fitting only to vapour–liquid equilibria data. The second approach entails a simultaneous fit to equilibrium properties and liquid shear viscosity. Finally, a third approach incorporates solid–fluid equilibrium data. The fitting procedure is facilitated by the use of recently published machine-learned equations of state for the Mie particle, which allows the prediction of thermophysical properties given a set of molecular parameters. The goodness-of-fit is assessed based on the deviations between calculated and experimental data. We also assess the behaviour of the thermal conductivity and speed of sound of the saturated liquid phase to evaluate the transferability of the molecular parameters to properties not used in the parametrisation. Apart from the singular case of monoatomic molecules, no single set of parameters can simultaneously describe the fluid phase equilibria, transport, and solid transition properties of quasi-spherical molecules. This result highlights the limitations of the Mie potential for modelling the thermophysical properties of small molecules. Therefore, a compromise must be made, either to achieve a good description of a specific set of properties or to attain modest accuracy across all phase space.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 8\",\"pages\":\" 620-634\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/me/d5me00048c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/me/d5me00048c\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d5me00048c","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

分子体系的力场参数化对于准确描述和预测宏观热物理性质至关重要。本文讨论了从准球形分子的实验数据中获得Mie力场参数σ、ε和λr的三种方法。第一种方法是基于一种经典策略,只考虑拟合汽液平衡数据。第二种方法需要同时适应平衡特性和液体剪切粘度。最后,第三种方法结合了固流平衡数据。通过使用最近发表的Mie粒子的机器学习状态方程,可以方便地拟合过程,该方程允许在给定一组分子参数的情况下预测热物理性质。拟合优度是根据计算数据和实验数据之间的偏差来评估的。我们还评估了饱和液相的导热性和声速的行为,以评估分子参数对参数化中未使用的性质的可转移性。除了单原子分子的奇异情况外,没有一组参数可以同时描述准球形分子的流体相平衡、输运和固体转变性质。这一结果突出了Mie势在模拟小分子热物理性质方面的局限性。因此,必须做出妥协,要么实现对一组特定属性的良好描述,要么在所有相空间中获得适度的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fitting a square peg in a round hole: parameterisation of quasi-spherical molecules employing the Mie potential†

Fitting a square peg in a round hole: parameterisation of quasi-spherical molecules employing the Mie potential†

The parameterisation of the force field of a molecular system is essential for accurately describing and predicting macroscopic thermophysical properties. Here, we discuss three approaches to obtain the molecular parameters (σ, ε, and λr) of the Mie force field from experimental data for quasi-spherical molecules. The first approach is based on a classical strategy that considers fitting only to vapour–liquid equilibria data. The second approach entails a simultaneous fit to equilibrium properties and liquid shear viscosity. Finally, a third approach incorporates solid–fluid equilibrium data. The fitting procedure is facilitated by the use of recently published machine-learned equations of state for the Mie particle, which allows the prediction of thermophysical properties given a set of molecular parameters. The goodness-of-fit is assessed based on the deviations between calculated and experimental data. We also assess the behaviour of the thermal conductivity and speed of sound of the saturated liquid phase to evaluate the transferability of the molecular parameters to properties not used in the parametrisation. Apart from the singular case of monoatomic molecules, no single set of parameters can simultaneously describe the fluid phase equilibria, transport, and solid transition properties of quasi-spherical molecules. This result highlights the limitations of the Mie potential for modelling the thermophysical properties of small molecules. Therefore, a compromise must be made, either to achieve a good description of a specific set of properties or to attain modest accuracy across all phase space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信