智能电网中机器学习检测假数据注入攻击的综合研究

Kiara Nand;Zhibo Zhang;Jiankun Hu
{"title":"智能电网中机器学习检测假数据注入攻击的综合研究","authors":"Kiara Nand;Zhibo Zhang;Jiankun Hu","doi":"10.1109/OJCS.2025.3585248","DOIUrl":null,"url":null,"abstract":"This article provides a comprehensive survey on the application of machine learning techniques for detecting False Data Injection Attacks (FDIA) in smart grids. It introduces a novel taxonomy categorizing detection methods based on key criteria such as AC and DC systems, performance metrics, bus size, algorithm selection, and specific subcategories of detection problems. The proposed taxonomy highlights the utility of Graph Neural Networks, autoencoders, and federated learning in addressing sub-problems like privacy preservation, generalized detection, locational detection, and attack classification. The survey underscores the importance of realistic, publicly accessible datasets and enhanced attack simulation techniques. Future research directions are suggested to further the development of robust FDIA detection methods in smart grids.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1121-1132"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11063250","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Survey on the Usage of Machine Learning to Detect False Data Injection Attacks in Smart Grids\",\"authors\":\"Kiara Nand;Zhibo Zhang;Jiankun Hu\",\"doi\":\"10.1109/OJCS.2025.3585248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides a comprehensive survey on the application of machine learning techniques for detecting False Data Injection Attacks (FDIA) in smart grids. It introduces a novel taxonomy categorizing detection methods based on key criteria such as AC and DC systems, performance metrics, bus size, algorithm selection, and specific subcategories of detection problems. The proposed taxonomy highlights the utility of Graph Neural Networks, autoencoders, and federated learning in addressing sub-problems like privacy preservation, generalized detection, locational detection, and attack classification. The survey underscores the importance of realistic, publicly accessible datasets and enhanced attack simulation techniques. Future research directions are suggested to further the development of robust FDIA detection methods in smart grids.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"1121-1132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11063250\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11063250/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11063250/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文全面综述了机器学习技术在智能电网中检测虚假数据注入攻击(FDIA)的应用。它介绍了一种新的分类法,根据关键标准(如交流和直流系统、性能指标、总线大小、算法选择和检测问题的特定子类别)对检测方法进行分类。提出的分类法强调了图神经网络、自动编码器和联邦学习在解决子问题(如隐私保护、广义检测、位置检测和攻击分类)方面的效用。该调查强调了现实的、可公开访问的数据集和增强的攻击模拟技术的重要性。提出了进一步发展智能电网中鲁棒FDIA检测方法的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Survey on the Usage of Machine Learning to Detect False Data Injection Attacks in Smart Grids
This article provides a comprehensive survey on the application of machine learning techniques for detecting False Data Injection Attacks (FDIA) in smart grids. It introduces a novel taxonomy categorizing detection methods based on key criteria such as AC and DC systems, performance metrics, bus size, algorithm selection, and specific subcategories of detection problems. The proposed taxonomy highlights the utility of Graph Neural Networks, autoencoders, and federated learning in addressing sub-problems like privacy preservation, generalized detection, locational detection, and attack classification. The survey underscores the importance of realistic, publicly accessible datasets and enhanced attack simulation techniques. Future research directions are suggested to further the development of robust FDIA detection methods in smart grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信