图像伪造区域定位的比较研究

IF 3.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mustafa Özden;Canberk Şahin
{"title":"图像伪造区域定位的比较研究","authors":"Mustafa Özden;Canberk Şahin","doi":"10.1109/ACCESS.2025.3591571","DOIUrl":null,"url":null,"abstract":"As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"130701-130718"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11088100","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study for Localization of Forgery Regions in Images\",\"authors\":\"Mustafa Özden;Canberk Şahin\",\"doi\":\"10.1109/ACCESS.2025.3591571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"130701-130718\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11088100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11088100/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11088100/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着计算机技术和图像处理软件的进步,通过改变数字图像而不留下任何明显的痕迹来制造简单的伪造或伪造图像变得越来越容易。在政治、法律和法医学等关键领域,检测图像中的操纵区域是非常必要的。在这项研究中,我们提出了一种结合传统技术,如离散余弦变换(DCT)和离散小波变换(DWT),以及深度学习方法的优点来检测伪造图像中被操纵区域的方法。所提出的方法涉及设计一个架构,其中DWT和DCT与基于DenseNet的卷积神经网络(CNN)并行使用。为了评估该方法的有效性,我们实现了三种替代方法:一种只使用DCT和CNN,另一种只使用DWT和CNN,第三种只使用CNN而不使用任何转换。总共在8个数据集上测试了4种不同的方法,并使用准确度、精密度、召回率、骰子相似系数和F1分数等指标对它们的性能进行了比较。结果表明,该方法具有较高的分类精度和有效性。利用传统图像处理技术和先进的深度学习算法相结合的优势,该方法在检测伪造图像中的篡改区域方面表现出优越的能力,为法医领域的应用提供了强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study for Localization of Forgery Regions in Images
As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信