{"title":"图像伪造区域定位的比较研究","authors":"Mustafa Özden;Canberk Şahin","doi":"10.1109/ACCESS.2025.3591571","DOIUrl":null,"url":null,"abstract":"As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"130701-130718"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11088100","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study for Localization of Forgery Regions in Images\",\"authors\":\"Mustafa Özden;Canberk Şahin\",\"doi\":\"10.1109/ACCESS.2025.3591571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"130701-130718\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11088100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11088100/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11088100/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Comparative Study for Localization of Forgery Regions in Images
As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.