{"title":"预测QSAR模型、毒性、分子对接和分子动力学模拟,寻找唑类衍生物作为治疗阿尔茨海默病的AChE抑制剂","authors":"Kajal Gupta, Akshay Kumar, Richa Patel, Piyush Ghode, Himanchal Kumar, Anjali Murmu, Nemdas Sahu, Geeteshwari Verma, Seema Sahu, Sonali Soni, Shakuntala Pal, Jagadish Singh, Partha Pratim Roy, Purusottam Banjare","doi":"10.1002/cem.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present study aims to find azole-containing acetylcholinesterase (AChE) inhibitors for the treatment of Alzheimer's disease (AD) through a mixed in silico approach. The first step involved the collection of azole derivatives and predictive quantitative structure–activity relationship (QSAR) model development for their AChE inhibition activity, using multiple linear regressions (MLRs) with the genetic algorithm (GA) for feature selection. The developed GA-MLR models were statistically robust enough internally (<i>R</i><sup>2</sup><i><sub>a</sub><sub>dj</sub></i> = 0.643–0.640, <i>Q</i><sup>2</sup><sub>LOO</sub> = 0.616–0.621) as well as externally (<i>R</i><sup>2</sup><sub>pred</sub> = 0.626–0.658, <i>R</i><sup>2</sup><i>M</i> = 0.562–0.601). The prediction reliability of the models was assured through the leverage approach of the applicability domain. The most significant models were applied to azole-containing PubChem database compounds, which were classified as active and inactive based on theoretical predictions. The toxicity analysis was also performed for the active compounds by the online web server Protox-II. The less or nontoxic compounds were subjected to molecular docking, along with donepezil as a standard. Docking analysis revealed that the four compounds have better binding affinity (binding energy = −11.6 to −11.2 kcal/mol) as compared to donepezil (binding energy = −11 kcal/mol). Apart from binding energy, donepezil was observed to be toxic by the prediction from the Protox-II. Finally, molecular dynamics (MD) analysis of two compounds (Compound 5, having the lowest IC<sub>50</sub>, and Compound 25, having the highest IC<sub>50</sub> among the top 4 docked compounds) not only differentiated them based on final interactions but also exhibited that the toxicity of donepezil might be due to hydrogen bonding with the active site.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive QSAR Models Followed by Toxicity, Molecular Docking, and Molecular Dynamics Simulation in Search of Azole Derivatives as AChE Inhibitors for the Treatment of Alzheimer's Disease\",\"authors\":\"Kajal Gupta, Akshay Kumar, Richa Patel, Piyush Ghode, Himanchal Kumar, Anjali Murmu, Nemdas Sahu, Geeteshwari Verma, Seema Sahu, Sonali Soni, Shakuntala Pal, Jagadish Singh, Partha Pratim Roy, Purusottam Banjare\",\"doi\":\"10.1002/cem.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The present study aims to find azole-containing acetylcholinesterase (AChE) inhibitors for the treatment of Alzheimer's disease (AD) through a mixed in silico approach. The first step involved the collection of azole derivatives and predictive quantitative structure–activity relationship (QSAR) model development for their AChE inhibition activity, using multiple linear regressions (MLRs) with the genetic algorithm (GA) for feature selection. The developed GA-MLR models were statistically robust enough internally (<i>R</i><sup>2</sup><i><sub>a</sub><sub>dj</sub></i> = 0.643–0.640, <i>Q</i><sup>2</sup><sub>LOO</sub> = 0.616–0.621) as well as externally (<i>R</i><sup>2</sup><sub>pred</sub> = 0.626–0.658, <i>R</i><sup>2</sup><i>M</i> = 0.562–0.601). The prediction reliability of the models was assured through the leverage approach of the applicability domain. The most significant models were applied to azole-containing PubChem database compounds, which were classified as active and inactive based on theoretical predictions. The toxicity analysis was also performed for the active compounds by the online web server Protox-II. The less or nontoxic compounds were subjected to molecular docking, along with donepezil as a standard. Docking analysis revealed that the four compounds have better binding affinity (binding energy = −11.6 to −11.2 kcal/mol) as compared to donepezil (binding energy = −11 kcal/mol). Apart from binding energy, donepezil was observed to be toxic by the prediction from the Protox-II. Finally, molecular dynamics (MD) analysis of two compounds (Compound 5, having the lowest IC<sub>50</sub>, and Compound 25, having the highest IC<sub>50</sub> among the top 4 docked compounds) not only differentiated them based on final interactions but also exhibited that the toxicity of donepezil might be due to hydrogen bonding with the active site.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.70049\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.70049","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
Predictive QSAR Models Followed by Toxicity, Molecular Docking, and Molecular Dynamics Simulation in Search of Azole Derivatives as AChE Inhibitors for the Treatment of Alzheimer's Disease
The present study aims to find azole-containing acetylcholinesterase (AChE) inhibitors for the treatment of Alzheimer's disease (AD) through a mixed in silico approach. The first step involved the collection of azole derivatives and predictive quantitative structure–activity relationship (QSAR) model development for their AChE inhibition activity, using multiple linear regressions (MLRs) with the genetic algorithm (GA) for feature selection. The developed GA-MLR models were statistically robust enough internally (R2adj = 0.643–0.640, Q2LOO = 0.616–0.621) as well as externally (R2pred = 0.626–0.658, R2M = 0.562–0.601). The prediction reliability of the models was assured through the leverage approach of the applicability domain. The most significant models were applied to azole-containing PubChem database compounds, which were classified as active and inactive based on theoretical predictions. The toxicity analysis was also performed for the active compounds by the online web server Protox-II. The less or nontoxic compounds were subjected to molecular docking, along with donepezil as a standard. Docking analysis revealed that the four compounds have better binding affinity (binding energy = −11.6 to −11.2 kcal/mol) as compared to donepezil (binding energy = −11 kcal/mol). Apart from binding energy, donepezil was observed to be toxic by the prediction from the Protox-II. Finally, molecular dynamics (MD) analysis of two compounds (Compound 5, having the lowest IC50, and Compound 25, having the highest IC50 among the top 4 docked compounds) not only differentiated them based on final interactions but also exhibited that the toxicity of donepezil might be due to hydrogen bonding with the active site.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.