Xiangzeng Chen, Jiejie Ling, Yan Gao, Ming-Ao Sun, Jilong Wang and Le Xu
{"title":"强酸性的SSZ-13分子筛通过协同双功能催化促进高空速二氧化碳到轻质烯烃的转化","authors":"Xiangzeng Chen, Jiejie Ling, Yan Gao, Ming-Ao Sun, Jilong Wang and Le Xu","doi":"10.1039/D5CY00512D","DOIUrl":null,"url":null,"abstract":"<p >The direct conversion of CO<small><sub>2</sub></small> to light olefins has gained significant attention in C1 chemistry. Compared to the modified Fischer–Tropsch synthesis route (CO<small><sub>2</sub></small>-FTO), the oxide–zeolite (OXZEO) composite catalytic system—which integrates methanol synthesis with methanol-to-olefin (MTO) reaction—has demonstrated superior light olefin selectivity. Nevertheless, conventional OXZEO systems employing silicoaluminophosphate (SAPO) zeolites face serious limitations due to their inherent weak acidity, requiring relatively low space velocities for effective MTO catalysis and resulting in suboptimal light olefin space-time-yield (STY). We developed a bifunctional ZnZrO<small><sub><em>x</em></sub></small>/H-SSZ-13 system where CO<small><sub>2</sub></small> hydrogenates to methanol on ZnZrO<small><sub><em>x</em></sub></small>, then rapidly converts to olefins on the strongly acidic zeolite. Crucially, the strong acidity of the SSZ-13 zeolite enables effective methanol conversion even at elevated space velocities. This system achieved 7.50 mmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> light olefin STY under a low reaction pressure of 1 MPa and a high gas-hourly-space-velocity (GHSV) of 21 000 mL g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>, with 82.6% light olefin selectivity. This work highlights the critical synergy between tailored acid strength of the zeolite component and reaction conditions in advancing CO<small><sub>2</sub></small>-to-olefin catalysis.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 15","pages":" 4575-4587"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly acidic SSZ-13 zeolite boosts high-space-velocity CO2-to-light olefin conversion via synergistic bifunctional catalysis†\",\"authors\":\"Xiangzeng Chen, Jiejie Ling, Yan Gao, Ming-Ao Sun, Jilong Wang and Le Xu\",\"doi\":\"10.1039/D5CY00512D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The direct conversion of CO<small><sub>2</sub></small> to light olefins has gained significant attention in C1 chemistry. Compared to the modified Fischer–Tropsch synthesis route (CO<small><sub>2</sub></small>-FTO), the oxide–zeolite (OXZEO) composite catalytic system—which integrates methanol synthesis with methanol-to-olefin (MTO) reaction—has demonstrated superior light olefin selectivity. Nevertheless, conventional OXZEO systems employing silicoaluminophosphate (SAPO) zeolites face serious limitations due to their inherent weak acidity, requiring relatively low space velocities for effective MTO catalysis and resulting in suboptimal light olefin space-time-yield (STY). We developed a bifunctional ZnZrO<small><sub><em>x</em></sub></small>/H-SSZ-13 system where CO<small><sub>2</sub></small> hydrogenates to methanol on ZnZrO<small><sub><em>x</em></sub></small>, then rapidly converts to olefins on the strongly acidic zeolite. Crucially, the strong acidity of the SSZ-13 zeolite enables effective methanol conversion even at elevated space velocities. This system achieved 7.50 mmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> light olefin STY under a low reaction pressure of 1 MPa and a high gas-hourly-space-velocity (GHSV) of 21 000 mL g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>, with 82.6% light olefin selectivity. This work highlights the critical synergy between tailored acid strength of the zeolite component and reaction conditions in advancing CO<small><sub>2</sub></small>-to-olefin catalysis.</p>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\" 15\",\"pages\":\" 4575-4587\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00512d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00512d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
二氧化碳直接转化为轻烯烃的研究在C1化学中引起了广泛的关注。与改进的费托合成路线(CO2-FTO)相比,将甲醇合成与甲醇制烯烃(MTO)反应结合在一起的氧化物-沸石(OXZEO)复合催化体系表现出了优越的轻质烯烃选择性。然而,使用磷酸硅铝(SAPO)沸石的传统OXZEO体系由于其固有的弱酸性而面临严重的局限性,需要相对较低的空速才能进行有效的MTO催化,从而导致轻烯烃的时空产率(STY)不理想。我们开发了一种双功能ZnZrOx/H-SSZ-13系统,其中CO2在ZnZrOx上氢化成甲醇,然后在强酸性沸石上迅速转化为烯烃。至关重要的是,SSZ-13沸石的强酸性即使在较高的空速下也能有效地转化甲醇。该体系在1 MPa的低反应压力和21000 mL gcat−1 h−1的高气时空速(GHSV)下获得了7.50 mmol gcat−1 h−1的轻烯烃STY,轻烯烃选择性为82.6%。这项工作强调了在推进二氧化碳制烯烃催化过程中,沸石组分的定制酸强度和反应条件之间的关键协同作用。
The direct conversion of CO2 to light olefins has gained significant attention in C1 chemistry. Compared to the modified Fischer–Tropsch synthesis route (CO2-FTO), the oxide–zeolite (OXZEO) composite catalytic system—which integrates methanol synthesis with methanol-to-olefin (MTO) reaction—has demonstrated superior light olefin selectivity. Nevertheless, conventional OXZEO systems employing silicoaluminophosphate (SAPO) zeolites face serious limitations due to their inherent weak acidity, requiring relatively low space velocities for effective MTO catalysis and resulting in suboptimal light olefin space-time-yield (STY). We developed a bifunctional ZnZrOx/H-SSZ-13 system where CO2 hydrogenates to methanol on ZnZrOx, then rapidly converts to olefins on the strongly acidic zeolite. Crucially, the strong acidity of the SSZ-13 zeolite enables effective methanol conversion even at elevated space velocities. This system achieved 7.50 mmol gcat−1 h−1 light olefin STY under a low reaction pressure of 1 MPa and a high gas-hourly-space-velocity (GHSV) of 21 000 mL gcat−1 h−1, with 82.6% light olefin selectivity. This work highlights the critical synergy between tailored acid strength of the zeolite component and reaction conditions in advancing CO2-to-olefin catalysis.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days