氧化铜修饰TiO2/MnOx复合材料双模催化降解双氯芬酸:来自暗活化和UV-A活化的见解

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Gloria Issa, Sylvie Kříženecká, Petr Bezdička, Daniela Popelková, Martin Kormunda, Jakub Ederer, Daniel Bůžek, Jan Čundrle, Zdeněk Baďura, Jiří Henych and Martin Šťastný
{"title":"氧化铜修饰TiO2/MnOx复合材料双模催化降解双氯芬酸:来自暗活化和UV-A活化的见解","authors":"Gloria Issa, Sylvie Kříženecká, Petr Bezdička, Daniela Popelková, Martin Kormunda, Jakub Ederer, Daniel Bůžek, Jan Čundrle, Zdeněk Baďura, Jiří Henych and Martin Šťastný","doi":"10.1039/D4CY01400F","DOIUrl":null,"url":null,"abstract":"<p >Diclofenac sodium (DCF), a widely used nonsteroidal anti-inflammatory drug, is a persistent pharmaceutical contaminant that resists removal by conventional wastewater treatment. In this study, CuO-modified TiO<small><sub>2</sub></small>/MnO<small><sub><em>x</em></sub></small> composites were developed as multifunctional catalysts for DCF degradation under both dark and UV-A conditions. The materials exhibited dual-mode reactivity through distinct mechanisms: (i) non-radical oxidative degradation under dark conditions, and (ii) radical-mediated photocatalysis under UV-A irradiation. Under illumination, the formation of an interfacial p–n–p heterojunction between CuO, MnO<small><sub><em>x</em></sub></small>, and TiO<small><sub>2</sub></small> generated internal electric fields that directed charge carrier migration—electrons flowing from the conduction band of TiO<small><sub>2</sub></small> toward CuO and MnO<small><sub><em>x</em></sub></small> domains, and holes in the reverse direction. This spatial charge separation suppressed recombination and sustained redox cycling between Cu<small><sup>2+</sup></small>/Cu<small><sup>+</sup></small> and Mn<small><sup>4+</sup></small>/Mn<small><sup>3+</sup></small>, promoting continuous ROS generation. In the absence of light, DCF degradation proceeded <em>via</em> non-radical oxidative pathways involving surface-bound reactive oxygen species and redox-active metal centers. Surface-sensitive XPS and hydroxyl quantification (TOTH) revealed elevated Mn<small><sup>3+</sup></small>/Mn<small><sup>4+</sup></small> ratios, enriched surface-associated lattice oxygen, and high –OH group densities for the most active catalysts. These features collectively facilitated pollutant adsorption, oxygen activation, and sustained interfacial electron transfer. LC-MS/MS analysis confirmed a consistent degradation pathway across both regimes, involving hydroxylation, decarboxylation, and dechlorination of DCF. The Cu/5Ti5Mn-HT and Cu/8Ti2Mn-HT catalysts achieved exceptional dark-phase degradation efficiencies (∼99.8% and ∼99.4%, respectively), while Cu/TiO<small><sub>2</sub></small> exhibited the highest UV-A photocatalytic performance (∼42%). These findings demonstrate the synergistic advantage of redox-active metal oxides and interfacial design, establishing CuO–MnO<small><sub><em>x</em></sub></small>–TiO<small><sub>2</sub></small> composites as promising candidates for advanced pharmaceutical pollutant remediation.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 15","pages":" 4438-4456"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cy/d4cy01400f?page=search","citationCount":"0","resultStr":"{\"title\":\"Dual-mode catalytic degradation of diclofenac by copper oxide-modified TiO2/MnOx composites: insights from dark and UV-A activation†\",\"authors\":\"Gloria Issa, Sylvie Kříženecká, Petr Bezdička, Daniela Popelková, Martin Kormunda, Jakub Ederer, Daniel Bůžek, Jan Čundrle, Zdeněk Baďura, Jiří Henych and Martin Šťastný\",\"doi\":\"10.1039/D4CY01400F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Diclofenac sodium (DCF), a widely used nonsteroidal anti-inflammatory drug, is a persistent pharmaceutical contaminant that resists removal by conventional wastewater treatment. In this study, CuO-modified TiO<small><sub>2</sub></small>/MnO<small><sub><em>x</em></sub></small> composites were developed as multifunctional catalysts for DCF degradation under both dark and UV-A conditions. The materials exhibited dual-mode reactivity through distinct mechanisms: (i) non-radical oxidative degradation under dark conditions, and (ii) radical-mediated photocatalysis under UV-A irradiation. Under illumination, the formation of an interfacial p–n–p heterojunction between CuO, MnO<small><sub><em>x</em></sub></small>, and TiO<small><sub>2</sub></small> generated internal electric fields that directed charge carrier migration—electrons flowing from the conduction band of TiO<small><sub>2</sub></small> toward CuO and MnO<small><sub><em>x</em></sub></small> domains, and holes in the reverse direction. This spatial charge separation suppressed recombination and sustained redox cycling between Cu<small><sup>2+</sup></small>/Cu<small><sup>+</sup></small> and Mn<small><sup>4+</sup></small>/Mn<small><sup>3+</sup></small>, promoting continuous ROS generation. In the absence of light, DCF degradation proceeded <em>via</em> non-radical oxidative pathways involving surface-bound reactive oxygen species and redox-active metal centers. Surface-sensitive XPS and hydroxyl quantification (TOTH) revealed elevated Mn<small><sup>3+</sup></small>/Mn<small><sup>4+</sup></small> ratios, enriched surface-associated lattice oxygen, and high –OH group densities for the most active catalysts. These features collectively facilitated pollutant adsorption, oxygen activation, and sustained interfacial electron transfer. LC-MS/MS analysis confirmed a consistent degradation pathway across both regimes, involving hydroxylation, decarboxylation, and dechlorination of DCF. The Cu/5Ti5Mn-HT and Cu/8Ti2Mn-HT catalysts achieved exceptional dark-phase degradation efficiencies (∼99.8% and ∼99.4%, respectively), while Cu/TiO<small><sub>2</sub></small> exhibited the highest UV-A photocatalytic performance (∼42%). These findings demonstrate the synergistic advantage of redox-active metal oxides and interfacial design, establishing CuO–MnO<small><sub><em>x</em></sub></small>–TiO<small><sub>2</sub></small> composites as promising candidates for advanced pharmaceutical pollutant remediation.</p>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\" 15\",\"pages\":\" 4438-4456\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cy/d4cy01400f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d4cy01400f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d4cy01400f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

双氯芬酸钠(DCF)是一种广泛使用的非甾体抗炎药,是一种持久性药物污染物,传统的废水处理方法难以去除。在本研究中,cuo修饰的TiO2/MnOx复合材料作为DCF在暗光和UV-A条件下降解的多功能催化剂。材料通过不同的机制表现出双模式反应性:(i)在黑暗条件下的非自由基氧化降解,(ii)在UV-A照射下自由基介导的光催化。在光照下,CuO、MnOx和TiO2之间形成的界面p-n-p异质结产生的内部电场引导载流子迁移——电子从TiO2的导带流向CuO和MnOx畴,空穴流向相反方向。这种空间电荷分离抑制了Cu2+/Cu+和Mn4+/Mn3+之间的重组和持续氧化还原循环,促进了ROS的持续生成。在没有光线的情况下,DCF降解通过非自由基氧化途径进行,涉及表面结合的活性氧和氧化还原活性金属中心。表面敏感的XPS和羟基定量分析(TOTH)显示,对于大多数活性催化剂,Mn3+/Mn4+比率升高,表面相关晶格氧富集,-OH基团密度高。这些特征共同促进了污染物吸附、氧活化和持续的界面电子转移。LC-MS/MS分析证实了两种机制中一致的降解途径,包括羟基化、脱羧和脱氯。Cu/5Ti5Mn-HT和Cu/8Ti2Mn-HT催化剂具有优异的暗相降解效率(分别为~ 99.8%和~ 99.4%),而Cu/TiO2具有最高的UV-A光催化性能(~ 42%)。这些发现证明了氧化还原活性金属氧化物和界面设计的协同优势,建立了CuO-MnOx-TiO2复合材料作为先进药物污染物修复的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-mode catalytic degradation of diclofenac by copper oxide-modified TiO2/MnOx composites: insights from dark and UV-A activation†

Dual-mode catalytic degradation of diclofenac by copper oxide-modified TiO2/MnOx composites: insights from dark and UV-A activation†

Diclofenac sodium (DCF), a widely used nonsteroidal anti-inflammatory drug, is a persistent pharmaceutical contaminant that resists removal by conventional wastewater treatment. In this study, CuO-modified TiO2/MnOx composites were developed as multifunctional catalysts for DCF degradation under both dark and UV-A conditions. The materials exhibited dual-mode reactivity through distinct mechanisms: (i) non-radical oxidative degradation under dark conditions, and (ii) radical-mediated photocatalysis under UV-A irradiation. Under illumination, the formation of an interfacial p–n–p heterojunction between CuO, MnOx, and TiO2 generated internal electric fields that directed charge carrier migration—electrons flowing from the conduction band of TiO2 toward CuO and MnOx domains, and holes in the reverse direction. This spatial charge separation suppressed recombination and sustained redox cycling between Cu2+/Cu+ and Mn4+/Mn3+, promoting continuous ROS generation. In the absence of light, DCF degradation proceeded via non-radical oxidative pathways involving surface-bound reactive oxygen species and redox-active metal centers. Surface-sensitive XPS and hydroxyl quantification (TOTH) revealed elevated Mn3+/Mn4+ ratios, enriched surface-associated lattice oxygen, and high –OH group densities for the most active catalysts. These features collectively facilitated pollutant adsorption, oxygen activation, and sustained interfacial electron transfer. LC-MS/MS analysis confirmed a consistent degradation pathway across both regimes, involving hydroxylation, decarboxylation, and dechlorination of DCF. The Cu/5Ti5Mn-HT and Cu/8Ti2Mn-HT catalysts achieved exceptional dark-phase degradation efficiencies (∼99.8% and ∼99.4%, respectively), while Cu/TiO2 exhibited the highest UV-A photocatalytic performance (∼42%). These findings demonstrate the synergistic advantage of redox-active metal oxides and interfacial design, establishing CuO–MnOx–TiO2 composites as promising candidates for advanced pharmaceutical pollutant remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信