{"title":"图约束分位数回归:统一结构化正则化和鲁棒建模,以提高准确性和可解释性","authors":"Yao Dong , He Jiang , Sheng Pan , Jianzhou Wang","doi":"10.1016/j.ins.2025.122530","DOIUrl":null,"url":null,"abstract":"<div><div>Quantile regression has gained substantial popularity in the forecasting domain due to its flexibility in accommodating arbitrary response variable distributions. However, existing models predominantly rely on regularized approaches like the quantile least absolute shrinkage and selection operator (quantile LASSO), ignoring the critical role of spatial geometric structures play in enhancing prediction accuracy. This study proposes a novel forecasting model that integrates quantile regression with graphical regularization to exploit structural dependencies among predictors. The proposed model obtains both robustness and graphical structure among the predictors. The graphical regularization framework enables simultaneous predictor selection and exploitation of their correlations, leveraging graph-based penalties to capture geometric patterns. To efficiently solve the regularized optimization problem, we develop a proximal alternating direction method of multipliers (PADMM) algorithm, and theoretically prove its convergence. In empirical study, we consider several datasets to demonstrate the superior forecasting performance via comparing with other state-of-the-art statistical and deep learning models. The Freidman test is also provided to support our finding statistically.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"720 ","pages":"Article 122530"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-constrained quantile regression: Unifying structured regularization and robust modeling for enhanced accuracy and interpretability\",\"authors\":\"Yao Dong , He Jiang , Sheng Pan , Jianzhou Wang\",\"doi\":\"10.1016/j.ins.2025.122530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantile regression has gained substantial popularity in the forecasting domain due to its flexibility in accommodating arbitrary response variable distributions. However, existing models predominantly rely on regularized approaches like the quantile least absolute shrinkage and selection operator (quantile LASSO), ignoring the critical role of spatial geometric structures play in enhancing prediction accuracy. This study proposes a novel forecasting model that integrates quantile regression with graphical regularization to exploit structural dependencies among predictors. The proposed model obtains both robustness and graphical structure among the predictors. The graphical regularization framework enables simultaneous predictor selection and exploitation of their correlations, leveraging graph-based penalties to capture geometric patterns. To efficiently solve the regularized optimization problem, we develop a proximal alternating direction method of multipliers (PADMM) algorithm, and theoretically prove its convergence. In empirical study, we consider several datasets to demonstrate the superior forecasting performance via comparing with other state-of-the-art statistical and deep learning models. The Freidman test is also provided to support our finding statistically.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"720 \",\"pages\":\"Article 122530\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025525006620\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525006620","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Graph-constrained quantile regression: Unifying structured regularization and robust modeling for enhanced accuracy and interpretability
Quantile regression has gained substantial popularity in the forecasting domain due to its flexibility in accommodating arbitrary response variable distributions. However, existing models predominantly rely on regularized approaches like the quantile least absolute shrinkage and selection operator (quantile LASSO), ignoring the critical role of spatial geometric structures play in enhancing prediction accuracy. This study proposes a novel forecasting model that integrates quantile regression with graphical regularization to exploit structural dependencies among predictors. The proposed model obtains both robustness and graphical structure among the predictors. The graphical regularization framework enables simultaneous predictor selection and exploitation of their correlations, leveraging graph-based penalties to capture geometric patterns. To efficiently solve the regularized optimization problem, we develop a proximal alternating direction method of multipliers (PADMM) algorithm, and theoretically prove its convergence. In empirical study, we consider several datasets to demonstrate the superior forecasting performance via comparing with other state-of-the-art statistical and deep learning models. The Freidman test is also provided to support our finding statistically.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.