双解析集和交换性质及其在网络优化和网络安全中的应用

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sikander Ali , Muhammad Kamran Jamil , Muhammad Azeem , Manzoor Ahmad Zahid , Tamer Ahmed Ismail
{"title":"双解析集和交换性质及其在网络优化和网络安全中的应用","authors":"Sikander Ali ,&nbsp;Muhammad Kamran Jamil ,&nbsp;Muhammad Azeem ,&nbsp;Manzoor Ahmad Zahid ,&nbsp;Tamer Ahmed Ismail","doi":"10.1016/j.matchemphys.2025.131289","DOIUrl":null,"url":null,"abstract":"<div><div>In the article, we discussed the double resolving sets and exchange property for the octagonal nanosheet structure. We examine the theoretical foundations and practical optimization of double resolving sets in the context of network redundancy and monitoring. A particular focus is placed on the exchange property, which is key in enhancing the flexibility and adaptability of resolving sets under dynamic network conditions. Suppose <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are subsets of the vertices of the graph and both have unique identification from all the vertices of the graph. Let <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> are two vertices such that <span><math><mrow><mi>v</mi><mo>∈</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>u</mi><mo>∈</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>.</mo></mrow></math></span> It is assumed that <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∖</mo><mi>v</mi><mo>)</mo></mrow><mo>∪</mo><mi>u</mi><mo>=</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> then we can say that exchange property is hold. The concept of a double resolving set ensures that every vertex in a graph can be uniquely identified using two independent resolving sets, providing the exchange property in cases where one vertex becomes ineffective. By applying sophisticated mathematical methods, we determine dual resolving sets that offer the best vertex identification and distance resolution in carbon nanosheets. These sets are essential for use in electronic devices and sensors, for example, where exact control over the characteristics of nanosheets is required. We also investigate the increased exchange qualities, which are these sets’ resilience to external shocks and their capacity to continue addressing problems even when flaws or alterations are present. Suppose <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> resolving sets and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> <span><math><mo>≠</mo></math></span> <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> then <span><math><mi>G</mi></math></span> has double resolving set.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"346 ","pages":"Article 131289"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double resolving sets and the exchange property with applications in network optimization and cybersecurity\",\"authors\":\"Sikander Ali ,&nbsp;Muhammad Kamran Jamil ,&nbsp;Muhammad Azeem ,&nbsp;Manzoor Ahmad Zahid ,&nbsp;Tamer Ahmed Ismail\",\"doi\":\"10.1016/j.matchemphys.2025.131289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the article, we discussed the double resolving sets and exchange property for the octagonal nanosheet structure. We examine the theoretical foundations and practical optimization of double resolving sets in the context of network redundancy and monitoring. A particular focus is placed on the exchange property, which is key in enhancing the flexibility and adaptability of resolving sets under dynamic network conditions. Suppose <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are subsets of the vertices of the graph and both have unique identification from all the vertices of the graph. Let <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> are two vertices such that <span><math><mrow><mi>v</mi><mo>∈</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>u</mi><mo>∈</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>.</mo></mrow></math></span> It is assumed that <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∖</mo><mi>v</mi><mo>)</mo></mrow><mo>∪</mo><mi>u</mi><mo>=</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> then we can say that exchange property is hold. The concept of a double resolving set ensures that every vertex in a graph can be uniquely identified using two independent resolving sets, providing the exchange property in cases where one vertex becomes ineffective. By applying sophisticated mathematical methods, we determine dual resolving sets that offer the best vertex identification and distance resolution in carbon nanosheets. These sets are essential for use in electronic devices and sensors, for example, where exact control over the characteristics of nanosheets is required. We also investigate the increased exchange qualities, which are these sets’ resilience to external shocks and their capacity to continue addressing problems even when flaws or alterations are present. Suppose <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> resolving sets and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> <span><math><mo>≠</mo></math></span> <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> then <span><math><mi>G</mi></math></span> has double resolving set.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"346 \",\"pages\":\"Article 131289\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058425009356\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425009356","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了八角形纳米片结构的双分辨集和交换性质。我们研究了在网络冗余和监控的背景下双解析集的理论基础和实际优化。特别关注交换属性,这是增强动态网络条件下解析集的灵活性和适应性的关键。假设W1和W2是图中所有顶点的子集,并且它们与图中的所有顶点都有唯一的标识。设u和v是v∈W1和u∈W2的两个顶点。假设(W1∈v)∪u=W2,那么我们可以说交换性质是成立的。双解析集的概念确保图中的每个顶点都可以使用两个独立的解析集唯一地标识,从而在一个顶点失效的情况下提供交换特性。通过应用复杂的数学方法,我们确定了在碳纳米片中提供最佳顶点识别和距离分辨率的双分辨集。这些装置对于电子设备和传感器的使用是必不可少的,例如,在这些设备和传感器中需要精确控制纳米片的特性。我们还研究了增加的交换质量,即这些组合对外部冲击的弹性以及即使存在缺陷或变更也能继续解决问题的能力。设W1和W2分辨率集,且W1≠W2,则G具有双分辨率集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Double resolving sets and the exchange property with applications in network optimization and cybersecurity

Double resolving sets and the exchange property with applications in network optimization and cybersecurity
In the article, we discussed the double resolving sets and exchange property for the octagonal nanosheet structure. We examine the theoretical foundations and practical optimization of double resolving sets in the context of network redundancy and monitoring. A particular focus is placed on the exchange property, which is key in enhancing the flexibility and adaptability of resolving sets under dynamic network conditions. Suppose W1 and W2 are subsets of the vertices of the graph and both have unique identification from all the vertices of the graph. Let u and v are two vertices such that vW1 and uW2. It is assumed that (W1v)u=W2 then we can say that exchange property is hold. The concept of a double resolving set ensures that every vertex in a graph can be uniquely identified using two independent resolving sets, providing the exchange property in cases where one vertex becomes ineffective. By applying sophisticated mathematical methods, we determine dual resolving sets that offer the best vertex identification and distance resolution in carbon nanosheets. These sets are essential for use in electronic devices and sensors, for example, where exact control over the characteristics of nanosheets is required. We also investigate the increased exchange qualities, which are these sets’ resilience to external shocks and their capacity to continue addressing problems even when flaws or alterations are present. Suppose W1 and W2 resolving sets and W1 W2 then G has double resolving set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信