{"title":"在资源受限的环境中,不断学习将视觉概念映射到语言模型","authors":"Clea Rebillard , Julio Hurtado , Andrii Krutsylo , Lucia Passaro , Vincenzo Lomonaco","doi":"10.1016/j.neucom.2025.131013","DOIUrl":null,"url":null,"abstract":"<div><div>Continually learning from non-independent and identically distributed (non-i.i.d.) data poses a significant challenge in deep learning, particularly in resource-constrained environments. Visual models trained via supervised learning often suffer from overfitting, catastrophic forgetting, and biased representations when faced with sequential tasks. In contrast, pre-trained language models demonstrate greater robustness in managing task sequences due to their generalized knowledge representations, albeit at the cost of high computational resources. Leveraging this advantage, we propose a novel learning strategy, Continual Visual Mapping (CVM), which continuously maps visual representations into a fixed knowledge space derived from a language model. By anchoring learning to this fixed space, CVM enables training small, efficient visual models, making it particularly suited for scenarios where adapting large pre-trained visual models is computationally or data-prohibitive. Empirical evaluations across five benchmarks demonstrate that CVM consistently outperforms state-of-the-art continual learning methods, showcasing its potential to enhance generalization and mitigate challenges in resource-constrained continual learning settings.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"652 ","pages":"Article 131013"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continually learn to map visual concepts to language models in resource-constrained environments\",\"authors\":\"Clea Rebillard , Julio Hurtado , Andrii Krutsylo , Lucia Passaro , Vincenzo Lomonaco\",\"doi\":\"10.1016/j.neucom.2025.131013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Continually learning from non-independent and identically distributed (non-i.i.d.) data poses a significant challenge in deep learning, particularly in resource-constrained environments. Visual models trained via supervised learning often suffer from overfitting, catastrophic forgetting, and biased representations when faced with sequential tasks. In contrast, pre-trained language models demonstrate greater robustness in managing task sequences due to their generalized knowledge representations, albeit at the cost of high computational resources. Leveraging this advantage, we propose a novel learning strategy, Continual Visual Mapping (CVM), which continuously maps visual representations into a fixed knowledge space derived from a language model. By anchoring learning to this fixed space, CVM enables training small, efficient visual models, making it particularly suited for scenarios where adapting large pre-trained visual models is computationally or data-prohibitive. Empirical evaluations across five benchmarks demonstrate that CVM consistently outperforms state-of-the-art continual learning methods, showcasing its potential to enhance generalization and mitigate challenges in resource-constrained continual learning settings.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"652 \",\"pages\":\"Article 131013\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225016856\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016856","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Continually learn to map visual concepts to language models in resource-constrained environments
Continually learning from non-independent and identically distributed (non-i.i.d.) data poses a significant challenge in deep learning, particularly in resource-constrained environments. Visual models trained via supervised learning often suffer from overfitting, catastrophic forgetting, and biased representations when faced with sequential tasks. In contrast, pre-trained language models demonstrate greater robustness in managing task sequences due to their generalized knowledge representations, albeit at the cost of high computational resources. Leveraging this advantage, we propose a novel learning strategy, Continual Visual Mapping (CVM), which continuously maps visual representations into a fixed knowledge space derived from a language model. By anchoring learning to this fixed space, CVM enables training small, efficient visual models, making it particularly suited for scenarios where adapting large pre-trained visual models is computationally or data-prohibitive. Empirical evaluations across five benchmarks demonstrate that CVM consistently outperforms state-of-the-art continual learning methods, showcasing its potential to enhance generalization and mitigate challenges in resource-constrained continual learning settings.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.