增强元IDS:自适应多阶段IDS与顺序模型调整

IF 3 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nadia Niknami , Vahid Mahzoon , Slobadan Vucetic , Jie Wu
{"title":"增强元IDS:自适应多阶段IDS与顺序模型调整","authors":"Nadia Niknami ,&nbsp;Vahid Mahzoon ,&nbsp;Slobadan Vucetic ,&nbsp;Jie Wu","doi":"10.1016/j.hcc.2025.100298","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional single-machine Network Intrusion Detection Systems (NIDS) are increasingly challenged by rapid network traffic growth and the complexities of advanced neural network methodologies. To address these issues, we propose an <em>Enhanced Meta-IDS</em> framework inspired by meta-computing principles, enabling dynamic resource allocation for optimized NIDS performance. Our hierarchical architecture employs a three-stage approach with iterative feedback mechanisms. We leverage these intervals in real-world scenarios with intermittent data batches to enhance our models. Outputs from the third stage provide labeled samples back to the first and second stages, allowing retraining and fine-tuning based on the most recent results without incurring additional latency. By dynamically adjusting model parameters and decision boundaries, our system optimizes responses to real-time data, effectively balancing computational efficiency and detection accuracy. By ensuring that only the most suspicious data points undergo intensive analysis, our multi-stage framework optimizes computational resource usage. Experiments on benchmark datasets demonstrate that our <em>Enhanced Meta-IDS</em> improves detection accuracy and reduces computational load or CPU time, ensuring robust performance in high-traffic environments. This adaptable approach offers an effective solution to modern network security challenges.</div></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"5 3","pages":"Article 100298"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Meta-IDS: Adaptive multi-stage IDS with sequential model adjustments\",\"authors\":\"Nadia Niknami ,&nbsp;Vahid Mahzoon ,&nbsp;Slobadan Vucetic ,&nbsp;Jie Wu\",\"doi\":\"10.1016/j.hcc.2025.100298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional single-machine Network Intrusion Detection Systems (NIDS) are increasingly challenged by rapid network traffic growth and the complexities of advanced neural network methodologies. To address these issues, we propose an <em>Enhanced Meta-IDS</em> framework inspired by meta-computing principles, enabling dynamic resource allocation for optimized NIDS performance. Our hierarchical architecture employs a three-stage approach with iterative feedback mechanisms. We leverage these intervals in real-world scenarios with intermittent data batches to enhance our models. Outputs from the third stage provide labeled samples back to the first and second stages, allowing retraining and fine-tuning based on the most recent results without incurring additional latency. By dynamically adjusting model parameters and decision boundaries, our system optimizes responses to real-time data, effectively balancing computational efficiency and detection accuracy. By ensuring that only the most suspicious data points undergo intensive analysis, our multi-stage framework optimizes computational resource usage. Experiments on benchmark datasets demonstrate that our <em>Enhanced Meta-IDS</em> improves detection accuracy and reduces computational load or CPU time, ensuring robust performance in high-traffic environments. This adaptable approach offers an effective solution to modern network security challenges.</div></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"5 3\",\"pages\":\"Article 100298\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295225000029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295225000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于网络流量的快速增长和先进神经网络方法的复杂性,传统的单机网络入侵检测系统(NIDS)面临着越来越大的挑战。为了解决这些问题,我们提出了一个受元计算原理启发的增强型元ids框架,实现动态资源分配以优化NIDS性能。我们的分层体系结构采用了带有迭代反馈机制的三阶段方法。我们在具有间歇数据批的真实场景中利用这些间隔来增强我们的模型。第三阶段的输出将标记的样本返回到第一阶段和第二阶段,允许基于最新结果进行再训练和微调,而不会产生额外的延迟。通过动态调整模型参数和决策边界,我们的系统优化了对实时数据的响应,有效地平衡了计算效率和检测精度。通过确保只对最可疑的数据点进行深入分析,我们的多阶段框架优化了计算资源的使用。在基准数据集上的实验表明,我们的增强型Meta-IDS提高了检测精度,减少了计算负载或CPU时间,确保了高流量环境下的稳健性能。这种适应性强的方法为现代网络安全挑战提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Meta-IDS: Adaptive multi-stage IDS with sequential model adjustments
Traditional single-machine Network Intrusion Detection Systems (NIDS) are increasingly challenged by rapid network traffic growth and the complexities of advanced neural network methodologies. To address these issues, we propose an Enhanced Meta-IDS framework inspired by meta-computing principles, enabling dynamic resource allocation for optimized NIDS performance. Our hierarchical architecture employs a three-stage approach with iterative feedback mechanisms. We leverage these intervals in real-world scenarios with intermittent data batches to enhance our models. Outputs from the third stage provide labeled samples back to the first and second stages, allowing retraining and fine-tuning based on the most recent results without incurring additional latency. By dynamically adjusting model parameters and decision boundaries, our system optimizes responses to real-time data, effectively balancing computational efficiency and detection accuracy. By ensuring that only the most suspicious data points undergo intensive analysis, our multi-stage framework optimizes computational resource usage. Experiments on benchmark datasets demonstrate that our Enhanced Meta-IDS improves detection accuracy and reduces computational load or CPU time, ensuring robust performance in high-traffic environments. This adaptable approach offers an effective solution to modern network security challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信