{"title":"在测地线空间上具有一般摄动的近点算法","authors":"Takuto Kajimura, Yasunori Kimura","doi":"10.1016/j.rinam.2025.100618","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we show some properties of a proximal mapping with a general perturbation for convex functions. We further investigate the existence and approximation of minimizers of a given convex function by using the proximal point algorithm with a general perturbation in complete geodesic spaces.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100618"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The proximal point algorithm with a general perturbation on geodesic spaces\",\"authors\":\"Takuto Kajimura, Yasunori Kimura\",\"doi\":\"10.1016/j.rinam.2025.100618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we show some properties of a proximal mapping with a general perturbation for convex functions. We further investigate the existence and approximation of minimizers of a given convex function by using the proximal point algorithm with a general perturbation in complete geodesic spaces.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100618\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The proximal point algorithm with a general perturbation on geodesic spaces
In this paper, we show some properties of a proximal mapping with a general perturbation for convex functions. We further investigate the existence and approximation of minimizers of a given convex function by using the proximal point algorithm with a general perturbation in complete geodesic spaces.