{"title":"压力和温度依赖于甲醇-水混合物的UNIQUAC模型","authors":"Adina Werner , Jongmin Kim , Fabian Mauss","doi":"10.1016/j.fluid.2025.114533","DOIUrl":null,"url":null,"abstract":"<div><div>A pressure dependency is included in a quadratic temperature dependent binary interaction parameter of the UNIQUAC model. The obtained activity coefficients for methanol-water mixtures are compared with only temperature dependent UNIQUAC and UNIFAC, and with calculated activity coefficients based on experimental data between 298.15 - 373.15 K and 0.1519 - 1.01325 bar produced with vapor-liquid equilibrium calculations and Wilson method. This model exhibits an overall good agreement. The predicted activity coefficients are more adaptable than those from models without pressure dependence, indicating potential for further improvement.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"599 ","pages":"Article 114533"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure and temperature dependent UNIQUAC model for methanol - water mixtures\",\"authors\":\"Adina Werner , Jongmin Kim , Fabian Mauss\",\"doi\":\"10.1016/j.fluid.2025.114533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A pressure dependency is included in a quadratic temperature dependent binary interaction parameter of the UNIQUAC model. The obtained activity coefficients for methanol-water mixtures are compared with only temperature dependent UNIQUAC and UNIFAC, and with calculated activity coefficients based on experimental data between 298.15 - 373.15 K and 0.1519 - 1.01325 bar produced with vapor-liquid equilibrium calculations and Wilson method. This model exhibits an overall good agreement. The predicted activity coefficients are more adaptable than those from models without pressure dependence, indicating potential for further improvement.</div></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"599 \",\"pages\":\"Article 114533\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381225002031\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381225002031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pressure and temperature dependent UNIQUAC model for methanol - water mixtures
A pressure dependency is included in a quadratic temperature dependent binary interaction parameter of the UNIQUAC model. The obtained activity coefficients for methanol-water mixtures are compared with only temperature dependent UNIQUAC and UNIFAC, and with calculated activity coefficients based on experimental data between 298.15 - 373.15 K and 0.1519 - 1.01325 bar produced with vapor-liquid equilibrium calculations and Wilson method. This model exhibits an overall good agreement. The predicted activity coefficients are more adaptable than those from models without pressure dependence, indicating potential for further improvement.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.