{"title":"快速而准确:具有鲁棒摩擦接触的实时超弹性模拟器","authors":"Ziqiu Zeng, Siyuan Luo, Fan Shi, Zhongkai Zhang","doi":"10.1145/3730834","DOIUrl":null,"url":null,"abstract":"We present a GPU-friendly framework for real-time implicit simulation of elastic material in the presence of frictional contacts. The integration of hyperelasticity, non-interpenetration contact, and friction in real-time simulations presents formidable nonlinear and non-smooth problems, which are highly challenging to solve. By incorporating nonlinear complementarity conditions within the local-global framework, we achieve rapid convergence in addressing these challenges. While the structure of local-global methods is not fully GPU-friendly, our proposal of a simple yet efficient solver with sparse presentation of the system inverse enables highly parallel computing while maintaining a fast convergence rate. Moreover, our novel splitting strategy for non-smooth indicators not only amplifies overall performance but also refines the complementarity preconditioner, enhancing the accuracy of frictional behavior modeling. Through extensive experimentation, the robustness of our framework in managing real-time contact scenarios, ranging from large-scale systems and extreme deformations to non-smooth contacts and precise friction interactions, has been validated. Compatible with a wide range of hyperelastic models, our approach maintains efficiency across both low and high stiffness materials. Despite its remarkable efficiency, robustness, and generality, our method is elegantly simple, with its core contributions grounded solely on standard matrix operations.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"38 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast But Accurate: A Real-Time Hyperelastic Simulator with Robust Frictional Contact\",\"authors\":\"Ziqiu Zeng, Siyuan Luo, Fan Shi, Zhongkai Zhang\",\"doi\":\"10.1145/3730834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a GPU-friendly framework for real-time implicit simulation of elastic material in the presence of frictional contacts. The integration of hyperelasticity, non-interpenetration contact, and friction in real-time simulations presents formidable nonlinear and non-smooth problems, which are highly challenging to solve. By incorporating nonlinear complementarity conditions within the local-global framework, we achieve rapid convergence in addressing these challenges. While the structure of local-global methods is not fully GPU-friendly, our proposal of a simple yet efficient solver with sparse presentation of the system inverse enables highly parallel computing while maintaining a fast convergence rate. Moreover, our novel splitting strategy for non-smooth indicators not only amplifies overall performance but also refines the complementarity preconditioner, enhancing the accuracy of frictional behavior modeling. Through extensive experimentation, the robustness of our framework in managing real-time contact scenarios, ranging from large-scale systems and extreme deformations to non-smooth contacts and precise friction interactions, has been validated. Compatible with a wide range of hyperelastic models, our approach maintains efficiency across both low and high stiffness materials. Despite its remarkable efficiency, robustness, and generality, our method is elegantly simple, with its core contributions grounded solely on standard matrix operations.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3730834\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3730834","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Fast But Accurate: A Real-Time Hyperelastic Simulator with Robust Frictional Contact
We present a GPU-friendly framework for real-time implicit simulation of elastic material in the presence of frictional contacts. The integration of hyperelasticity, non-interpenetration contact, and friction in real-time simulations presents formidable nonlinear and non-smooth problems, which are highly challenging to solve. By incorporating nonlinear complementarity conditions within the local-global framework, we achieve rapid convergence in addressing these challenges. While the structure of local-global methods is not fully GPU-friendly, our proposal of a simple yet efficient solver with sparse presentation of the system inverse enables highly parallel computing while maintaining a fast convergence rate. Moreover, our novel splitting strategy for non-smooth indicators not only amplifies overall performance but also refines the complementarity preconditioner, enhancing the accuracy of frictional behavior modeling. Through extensive experimentation, the robustness of our framework in managing real-time contact scenarios, ranging from large-scale systems and extreme deformations to non-smooth contacts and precise friction interactions, has been validated. Compatible with a wide range of hyperelastic models, our approach maintains efficiency across both low and high stiffness materials. Despite its remarkable efficiency, robustness, and generality, our method is elegantly simple, with its core contributions grounded solely on standard matrix operations.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.