实木纹理的Mokume数据集和逆建模

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Maria Larsson, Hodaka Yamaguchi, Ehsan Pajouheshgar, I-Chao Shen, Kenji Tojo, Chia-Ming Chang, Lars Hansson, Olof Broman, Takashi Ijiri, Ariel Shamir, Wenzel Jakob, Takeo Igarashi
{"title":"实木纹理的Mokume数据集和逆建模","authors":"Maria Larsson, Hodaka Yamaguchi, Ehsan Pajouheshgar, I-Chao Shen, Kenji Tojo, Chia-Ming Chang, Lars Hansson, Olof Broman, Takashi Ijiri, Ariel Shamir, Wenzel Jakob, Takeo Igarashi","doi":"10.1145/3730874","DOIUrl":null,"url":null,"abstract":"We present the <jats:italic toggle=\"yes\">Mokume</jats:italic> dataset for solid wood texturing consisting of 190 cube-shaped samples of various hard and softwood species documented by high-resolution exterior photographs, annual ring annotations, and volumetric computed tomography (CT) scans. A subset of samples further includes photographs along slanted cuts through the cube for validation purposes. Using this dataset, we propose a three-stage inverse modeling pipeline to infer solid wood textures using only exterior photographs. Our method begins by evaluating a neural model to localize year rings on the cube face photographs. We then extend these exterior 2D observations into a globally consistent 3D representation by optimizing a procedural growth field using a novel iso-contour loss. Finally, we synthesize a detailed volumetric color texture from the growth field. For this last step, we propose two methods with different efficiency and quality characteristics: a fast inverse procedural texture method, and a neural cellular automaton (NCA). We demonstrate the synergy between the <jats:italic toggle=\"yes\">Mokume</jats:italic> dataset and the proposed algorithms through comprehensive comparisons with unseen captured data. We also present experiments demonstrating the efficiency of our pipeline's components against ablations and baselines. Our code, the dataset, and reconstructions are available via https://mokumeproject.github.io/.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"12 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mokume Dataset and Inverse Modeling of Solid Wood Textures\",\"authors\":\"Maria Larsson, Hodaka Yamaguchi, Ehsan Pajouheshgar, I-Chao Shen, Kenji Tojo, Chia-Ming Chang, Lars Hansson, Olof Broman, Takashi Ijiri, Ariel Shamir, Wenzel Jakob, Takeo Igarashi\",\"doi\":\"10.1145/3730874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the <jats:italic toggle=\\\"yes\\\">Mokume</jats:italic> dataset for solid wood texturing consisting of 190 cube-shaped samples of various hard and softwood species documented by high-resolution exterior photographs, annual ring annotations, and volumetric computed tomography (CT) scans. A subset of samples further includes photographs along slanted cuts through the cube for validation purposes. Using this dataset, we propose a three-stage inverse modeling pipeline to infer solid wood textures using only exterior photographs. Our method begins by evaluating a neural model to localize year rings on the cube face photographs. We then extend these exterior 2D observations into a globally consistent 3D representation by optimizing a procedural growth field using a novel iso-contour loss. Finally, we synthesize a detailed volumetric color texture from the growth field. For this last step, we propose two methods with different efficiency and quality characteristics: a fast inverse procedural texture method, and a neural cellular automaton (NCA). We demonstrate the synergy between the <jats:italic toggle=\\\"yes\\\">Mokume</jats:italic> dataset and the proposed algorithms through comprehensive comparisons with unseen captured data. We also present experiments demonstrating the efficiency of our pipeline's components against ablations and baselines. Our code, the dataset, and reconstructions are available via https://mokumeproject.github.io/.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3730874\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3730874","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了实木纹理的Mokume数据集,该数据集由190个立方体的各种硬木和软木样本组成,这些样本由高分辨率的外部照片、年度环注释和体积计算机断层扫描(CT)记录。为了验证目的,样本子集进一步包括沿立方体倾斜切口的照片。使用该数据集,我们提出了一个三步反建模管道,仅使用外部照片来推断实木纹理。我们的方法首先通过评估一个神经模型来定位立方体人脸照片上的年轮。然后,我们通过使用新的等轮廓损失优化程序生长场,将这些外部2D观测扩展到全局一致的3D表示。最后,我们从生长场合成了一个详细的体积颜色纹理。对于最后一步,我们提出了两种具有不同效率和质量特征的方法:快速逆程序纹理方法和神经细胞自动机(NCA)。我们通过与未见过的捕获数据进行全面比较,展示了Mokume数据集和所提出算法之间的协同作用。我们还展示了实验证明我们的管道组件对烧蚀和基线的效率。我们的代码、数据集和重建可以通过https://mokumeproject.github.io/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mokume Dataset and Inverse Modeling of Solid Wood Textures
We present the Mokume dataset for solid wood texturing consisting of 190 cube-shaped samples of various hard and softwood species documented by high-resolution exterior photographs, annual ring annotations, and volumetric computed tomography (CT) scans. A subset of samples further includes photographs along slanted cuts through the cube for validation purposes. Using this dataset, we propose a three-stage inverse modeling pipeline to infer solid wood textures using only exterior photographs. Our method begins by evaluating a neural model to localize year rings on the cube face photographs. We then extend these exterior 2D observations into a globally consistent 3D representation by optimizing a procedural growth field using a novel iso-contour loss. Finally, we synthesize a detailed volumetric color texture from the growth field. For this last step, we propose two methods with different efficiency and quality characteristics: a fast inverse procedural texture method, and a neural cellular automaton (NCA). We demonstrate the synergy between the Mokume dataset and the proposed algorithms through comprehensive comparisons with unseen captured data. We also present experiments demonstrating the efficiency of our pipeline's components against ablations and baselines. Our code, the dataset, and reconstructions are available via https://mokumeproject.github.io/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信