线弹性壳点阵超材料的渐近分析与设计

IF 9.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Di Zhang, Ligang Liu
{"title":"线弹性壳点阵超材料的渐近分析与设计","authors":"Di Zhang, Ligang Liu","doi":"10.1145/3730888","DOIUrl":null,"url":null,"abstract":"We present an asymptotic analysis of shell lattice metamaterials based on Ciarlet's shell theory, introducing a new metric— <jats:italic toggle=\"yes\">asymptotic directional stiffness</jats:italic> (ADS)—to quantify how the geometry of the middle surface governs the effective stiffness. We prove a convergence theorem that rigorously characterizes ADS and establishes its upper bound, along with necessary and sufficient condition for achieving it. As a key result, our theory provides the first rigorous explanation for the high bulk modulus observed in Triply Periodic Minimal Surfaces (TPMS)-based shell lattices. To optimize ADS on general periodic surfaces, we propose a triangular-mesh-based discretization and shape optimization framework. Numerical experiments validate the theoretical findings and demonstrate the effectiveness of the optimization under various design objectives. Our implementation is available at https://github.com/lavenklau/minisurf.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"14 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic analysis and design of linear elastic shell lattice metamaterials\",\"authors\":\"Di Zhang, Ligang Liu\",\"doi\":\"10.1145/3730888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an asymptotic analysis of shell lattice metamaterials based on Ciarlet's shell theory, introducing a new metric— <jats:italic toggle=\\\"yes\\\">asymptotic directional stiffness</jats:italic> (ADS)—to quantify how the geometry of the middle surface governs the effective stiffness. We prove a convergence theorem that rigorously characterizes ADS and establishes its upper bound, along with necessary and sufficient condition for achieving it. As a key result, our theory provides the first rigorous explanation for the high bulk modulus observed in Triply Periodic Minimal Surfaces (TPMS)-based shell lattices. To optimize ADS on general periodic surfaces, we propose a triangular-mesh-based discretization and shape optimization framework. Numerical experiments validate the theoretical findings and demonstrate the effectiveness of the optimization under various design objectives. Our implementation is available at https://github.com/lavenklau/minisurf.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3730888\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3730888","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文基于Ciarlet的壳理论对壳晶格超材料进行了渐近分析,引入了一个新的度量-渐近方向刚度(ADS)来量化中间表面的几何形状如何影响有效刚度。我们证明了ADS的一个收敛定理,并建立了它的上界,给出了实现它的充分必要条件。作为关键结果,我们的理论为基于三周期最小表面(TPMS)的壳晶格中观察到的高体积模量提供了第一个严格的解释。为了优化一般周期曲面上的ADS,我们提出了一种基于三角网格的离散化和形状优化框架。数值实验验证了理论结果,并证明了在不同设计目标下优化的有效性。我们的实现可以在https://github.com/lavenklau/minisurf上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic analysis and design of linear elastic shell lattice metamaterials
We present an asymptotic analysis of shell lattice metamaterials based on Ciarlet's shell theory, introducing a new metric— asymptotic directional stiffness (ADS)—to quantify how the geometry of the middle surface governs the effective stiffness. We prove a convergence theorem that rigorously characterizes ADS and establishes its upper bound, along with necessary and sufficient condition for achieving it. As a key result, our theory provides the first rigorous explanation for the high bulk modulus observed in Triply Periodic Minimal Surfaces (TPMS)-based shell lattices. To optimize ADS on general periodic surfaces, we propose a triangular-mesh-based discretization and shape optimization framework. Numerical experiments validate the theoretical findings and demonstrate the effectiveness of the optimization under various design objectives. Our implementation is available at https://github.com/lavenklau/minisurf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信