卷云:GPU上的自适应混合粒子网格流图

IF 9.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Mengdi Wang, Fan Feng, Junlin Li, Bo Zhu
{"title":"卷云:GPU上的自适应混合粒子网格流图","authors":"Mengdi Wang, Fan Feng, Junlin Li, Bo Zhu","doi":"10.1145/3731190","DOIUrl":null,"url":null,"abstract":"We propose the <jats:italic toggle=\"yes\">adaptive hybrid particle-grid flow map</jats:italic> method, a novel flow-map approach that leverages Lagrangian particles to simultaneously transport impulse and guide grid adaptation, introducing a fully adaptive flow map-based fluid simulation framework. The core idea of our method is to maintain flow-map trajectories separately on grid nodes and particles: the grid-based representation tracks long-range flow maps at a coarse spatial resolution, while the particle-based representation tracks both long and short-range flow maps, enhanced by their gradients, at a fine resolution. This hybrid Eulerian-Lagrangian flow-map representation naturally enables adaptivity for both advection and projection steps. We implement this method in <jats:italic toggle=\"yes\">Cirrus</jats:italic> , a GPU-based fluid simulation framework designed for octree-like adaptive grids enhanced with particle trackers. The efficacy of our system is demonstrated through numerical tests and various simulation examples, achieving up to 512 × 512 × 2048 effective resolution on an RTX 4090 GPU. We achieve a 1.5 to 2× speedup with our GPU optimization over the Particle Flow Map method on the same hardware, while the adaptive grid implementation offers efficiency gains of one to two orders of magnitude by reducing computational resource requirements. The source code has been made publicly available at: https://wang-mengdi.github.io/proj/25-cirrus/.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"17 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cirrus: Adaptive Hybrid Particle-Grid Flow Maps on GPU\",\"authors\":\"Mengdi Wang, Fan Feng, Junlin Li, Bo Zhu\",\"doi\":\"10.1145/3731190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the <jats:italic toggle=\\\"yes\\\">adaptive hybrid particle-grid flow map</jats:italic> method, a novel flow-map approach that leverages Lagrangian particles to simultaneously transport impulse and guide grid adaptation, introducing a fully adaptive flow map-based fluid simulation framework. The core idea of our method is to maintain flow-map trajectories separately on grid nodes and particles: the grid-based representation tracks long-range flow maps at a coarse spatial resolution, while the particle-based representation tracks both long and short-range flow maps, enhanced by their gradients, at a fine resolution. This hybrid Eulerian-Lagrangian flow-map representation naturally enables adaptivity for both advection and projection steps. We implement this method in <jats:italic toggle=\\\"yes\\\">Cirrus</jats:italic> , a GPU-based fluid simulation framework designed for octree-like adaptive grids enhanced with particle trackers. The efficacy of our system is demonstrated through numerical tests and various simulation examples, achieving up to 512 × 512 × 2048 effective resolution on an RTX 4090 GPU. We achieve a 1.5 to 2× speedup with our GPU optimization over the Particle Flow Map method on the same hardware, while the adaptive grid implementation offers efficiency gains of one to two orders of magnitude by reducing computational resource requirements. The source code has been made publicly available at: https://wang-mengdi.github.io/proj/25-cirrus/.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3731190\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3731190","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了自适应混合粒子-网格流图方法,这是一种利用拉格朗日粒子同时传输脉冲和引导网格自适应的新型流图方法,引入了一个完全自适应的基于流图的流体模拟框架。我们的方法的核心思想是在网格节点和粒子上分别维护流图轨迹:基于网格的表示以粗空间分辨率跟踪远程流图,而基于粒子的表示以精细分辨率跟踪远程和短程流图,并通过其梯度进行增强。这种混合欧拉-拉格朗日流程图表示自然地使平流和投影步骤都具有适应性。我们在Cirrus中实现了这种方法,这是一个基于gpu的流体模拟框架,专为带有粒子跟踪器的八叉形自适应网格而设计。通过数值测试和各种仿真实例证明了系统的有效性,在RTX 4090 GPU上实现了高达512 × 512 × 2048的有效分辨率。在相同的硬件上,我们通过GPU优化实现了1.5到2倍的加速,而自适应网格实现通过减少计算资源需求提供了一到两个数量级的效率提升。源代码已在https://wang-mengdi.github.io/proj/25-cirrus/上公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cirrus: Adaptive Hybrid Particle-Grid Flow Maps on GPU
We propose the adaptive hybrid particle-grid flow map method, a novel flow-map approach that leverages Lagrangian particles to simultaneously transport impulse and guide grid adaptation, introducing a fully adaptive flow map-based fluid simulation framework. The core idea of our method is to maintain flow-map trajectories separately on grid nodes and particles: the grid-based representation tracks long-range flow maps at a coarse spatial resolution, while the particle-based representation tracks both long and short-range flow maps, enhanced by their gradients, at a fine resolution. This hybrid Eulerian-Lagrangian flow-map representation naturally enables adaptivity for both advection and projection steps. We implement this method in Cirrus , a GPU-based fluid simulation framework designed for octree-like adaptive grids enhanced with particle trackers. The efficacy of our system is demonstrated through numerical tests and various simulation examples, achieving up to 512 × 512 × 2048 effective resolution on an RTX 4090 GPU. We achieve a 1.5 to 2× speedup with our GPU optimization over the Particle Flow Map method on the same hardware, while the adaptive grid implementation offers efficiency gains of one to two orders of magnitude by reducing computational resource requirements. The source code has been made publicly available at: https://wang-mengdi.github.io/proj/25-cirrus/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信