Hugo Schott, Theo Thonat, Thibaud Lambert, Eric Guérin, Eric Galin, Axel Paris
{"title":"球体雕刻:有符号距离场的边界卷","authors":"Hugo Schott, Theo Thonat, Thibaud Lambert, Eric Guérin, Eric Galin, Axel Paris","doi":"10.1145/3730845","DOIUrl":null,"url":null,"abstract":"We introduce <jats:italic toggle=\"yes\">Sphere Carving</jats:italic> , a novel method for automatically computing bounding volumes that closely bound a procedurally defined implicit surface. Starting from an initial bounding volume located far from the object, we iteratively approach the surface by leveraging the signed distance function information. Field function queries define a set of empty spheres, from which we extract intersection points that are used to compute a bounding volume. Our method is agnostic of the function representation and only requires a conservative signed distance field as input. This encompasses a large set of procedurally defined implicit surface models such as exact or Lipschitz functions, BlobTrees, or even neural representations. <jats:italic toggle=\"yes\">Sphere Carving</jats:italic> is conceptually simple, independent of the function representation, requires a small number of function queries to create bounding volumes, and accelerates queries in Sphere Tracing and polygonization.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"10 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sphere Carving: Bounding Volumes for Signed Distance Fields\",\"authors\":\"Hugo Schott, Theo Thonat, Thibaud Lambert, Eric Guérin, Eric Galin, Axel Paris\",\"doi\":\"10.1145/3730845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce <jats:italic toggle=\\\"yes\\\">Sphere Carving</jats:italic> , a novel method for automatically computing bounding volumes that closely bound a procedurally defined implicit surface. Starting from an initial bounding volume located far from the object, we iteratively approach the surface by leveraging the signed distance function information. Field function queries define a set of empty spheres, from which we extract intersection points that are used to compute a bounding volume. Our method is agnostic of the function representation and only requires a conservative signed distance field as input. This encompasses a large set of procedurally defined implicit surface models such as exact or Lipschitz functions, BlobTrees, or even neural representations. <jats:italic toggle=\\\"yes\\\">Sphere Carving</jats:italic> is conceptually simple, independent of the function representation, requires a small number of function queries to create bounding volumes, and accelerates queries in Sphere Tracing and polygonization.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3730845\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3730845","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Sphere Carving: Bounding Volumes for Signed Distance Fields
We introduce Sphere Carving , a novel method for automatically computing bounding volumes that closely bound a procedurally defined implicit surface. Starting from an initial bounding volume located far from the object, we iteratively approach the surface by leveraging the signed distance function information. Field function queries define a set of empty spheres, from which we extract intersection points that are used to compute a bounding volume. Our method is agnostic of the function representation and only requires a conservative signed distance field as input. This encompasses a large set of procedurally defined implicit surface models such as exact or Lipschitz functions, BlobTrees, or even neural representations. Sphere Carving is conceptually simple, independent of the function representation, requires a small number of function queries to create bounding volumes, and accelerates queries in Sphere Tracing and polygonization.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.