使用XAI优化旅行时间可靠性:使用机器学习和元启发式的弗吉尼亚州州际网络案例

IF 4.9
Navid Khorshidi , Shahriar Afandizadeh Zargari , Soheil Rezashoar , Hamid Mirzahossein
{"title":"使用XAI优化旅行时间可靠性:使用机器学习和元启发式的弗吉尼亚州州际网络案例","authors":"Navid Khorshidi ,&nbsp;Shahriar Afandizadeh Zargari ,&nbsp;Soheil Rezashoar ,&nbsp;Hamid Mirzahossein","doi":"10.1016/j.mlwa.2025.100709","DOIUrl":null,"url":null,"abstract":"<div><div>This paper applies machine learning models to predict travel time reliability in transportation networks, using XGBoost, LightGBM, and CatBoost optimized with seven metaheuristic algorithms. The models were fine-tuned with a four-year dataset (2014–2017) covering 59 interstate sections in Virginia. Key features Link Length, AADT/mile/lane, Total Rate, and PRCP/1000 were identified as influential factors for travel time index prediction. Results revealed that XGBoost optimized with Grey Wolf Optimizer (GWO) achieved the highest accuracy at 92 %, surpassing the base model. LightGBM-GWO and CatBoost-GWO also demonstrated improvements, scoring up to 89 %. GWO outperformed other optimization methods, delivering superior accuracy with fewer control parameters. Feature importance analysis highlighted Link Length and AADT/Lane.mile as critical predictors. This research enhances travel time reliability prediction, providing insights for transportation planning and management. Future work includes exploring multi-objective optimization and integrating additional features to refine model accuracy further.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"21 ","pages":"Article 100709"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing travel time reliability with XAI: A Virginia interstate network case using machine learning and meta-heuristics\",\"authors\":\"Navid Khorshidi ,&nbsp;Shahriar Afandizadeh Zargari ,&nbsp;Soheil Rezashoar ,&nbsp;Hamid Mirzahossein\",\"doi\":\"10.1016/j.mlwa.2025.100709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper applies machine learning models to predict travel time reliability in transportation networks, using XGBoost, LightGBM, and CatBoost optimized with seven metaheuristic algorithms. The models were fine-tuned with a four-year dataset (2014–2017) covering 59 interstate sections in Virginia. Key features Link Length, AADT/mile/lane, Total Rate, and PRCP/1000 were identified as influential factors for travel time index prediction. Results revealed that XGBoost optimized with Grey Wolf Optimizer (GWO) achieved the highest accuracy at 92 %, surpassing the base model. LightGBM-GWO and CatBoost-GWO also demonstrated improvements, scoring up to 89 %. GWO outperformed other optimization methods, delivering superior accuracy with fewer control parameters. Feature importance analysis highlighted Link Length and AADT/Lane.mile as critical predictors. This research enhances travel time reliability prediction, providing insights for transportation planning and management. Future work includes exploring multi-objective optimization and integrating additional features to refine model accuracy further.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"21 \",\"pages\":\"Article 100709\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025000921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文应用机器学习模型来预测交通网络的旅行时间可靠性,使用XGBoost, LightGBM和CatBoost优化了七种元启发式算法。这些模型是用覆盖弗吉尼亚州59个州际公路路段的四年数据集(2014-2017年)进行微调的。道路长度、AADT/mile/lane、总速率和PRCP/1000是影响出行时间指数预测的主要因素。结果表明,使用灰狼优化器(GWO)优化的XGBoost达到了92%的最高准确率,超过了基本模型。LightGBM-GWO和CatBoost-GWO也表现出改进,得分高达89%。GWO优于其他优化方法,以更少的控制参数提供更高的精度。特征重要性分析强调了链路长度和AADT/车道英里作为关键预测因素。该研究增强了出行时间可靠性预测,为交通规划和管理提供了参考。未来的工作包括探索多目标优化和集成额外的特征,以进一步提高模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing travel time reliability with XAI: A Virginia interstate network case using machine learning and meta-heuristics
This paper applies machine learning models to predict travel time reliability in transportation networks, using XGBoost, LightGBM, and CatBoost optimized with seven metaheuristic algorithms. The models were fine-tuned with a four-year dataset (2014–2017) covering 59 interstate sections in Virginia. Key features Link Length, AADT/mile/lane, Total Rate, and PRCP/1000 were identified as influential factors for travel time index prediction. Results revealed that XGBoost optimized with Grey Wolf Optimizer (GWO) achieved the highest accuracy at 92 %, surpassing the base model. LightGBM-GWO and CatBoost-GWO also demonstrated improvements, scoring up to 89 %. GWO outperformed other optimization methods, delivering superior accuracy with fewer control parameters. Feature importance analysis highlighted Link Length and AADT/Lane.mile as critical predictors. This research enhances travel time reliability prediction, providing insights for transportation planning and management. Future work includes exploring multi-objective optimization and integrating additional features to refine model accuracy further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信