{"title":"推进InSAR分析:线性和非线性位移建模的TimeSAPS","authors":"Eugenia Giorgini , Luca Tavasci , Enrica Vecchi , Luca Poluzzi , Stefano Gandolfi","doi":"10.1016/j.rsase.2025.101656","DOIUrl":null,"url":null,"abstract":"<div><div>The Synthetic Aperture Radar Interferometry (InSAR) technique enables precise monitoring of ground displacements over extensive areas based on radar data. While several open-source software packages have been developed for SAR data processing, most retrieve the average velocity of Persistent Scatterers (PS) clusters under the assumption of linear behavior, limiting their application in complex scenarios.</div><div>To enable more advanced and detailed analysis of InSAR time series, the TimeSAPS software package has been developed. This tool addresses the limitations of existing open-source packages, which primarily focus on linear approximations of displacement time series, by introducing advanced capabilities for analyzing both linear trends and nonlinear components. TimeSAPS performs a comprehensive analysis of PS derived from InSAR processing, characterizing time series in terms of linear trends, periodic signals, and nonlinear movements. Nonlinear components are modeled as a combination of sinusoids, each defined by its phase, amplitude, and frequency power spectrum. TimeSAPS overcomes the limitations of existing tools by providing advanced methods to recognize and model nonlinear surface movements, even when they are not known a priori.</div><div>This paper presents the theoretical foundations of TimeSAPS and demonstrates its capabilities through two case studies based on real InSAR data. These examples showcase the software’s effectiveness in reconstructing nonlinear displacement patterns and identifying periodic trends. The results underline TimeSAPS’s potential to analyze complex ground displacement scenarios, making it a valuable resource for the scientific and engineering communities.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"39 ","pages":"Article 101656"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing InSAR analysis: TimeSAPS for linear and nonlinear displacement modeling\",\"authors\":\"Eugenia Giorgini , Luca Tavasci , Enrica Vecchi , Luca Poluzzi , Stefano Gandolfi\",\"doi\":\"10.1016/j.rsase.2025.101656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Synthetic Aperture Radar Interferometry (InSAR) technique enables precise monitoring of ground displacements over extensive areas based on radar data. While several open-source software packages have been developed for SAR data processing, most retrieve the average velocity of Persistent Scatterers (PS) clusters under the assumption of linear behavior, limiting their application in complex scenarios.</div><div>To enable more advanced and detailed analysis of InSAR time series, the TimeSAPS software package has been developed. This tool addresses the limitations of existing open-source packages, which primarily focus on linear approximations of displacement time series, by introducing advanced capabilities for analyzing both linear trends and nonlinear components. TimeSAPS performs a comprehensive analysis of PS derived from InSAR processing, characterizing time series in terms of linear trends, periodic signals, and nonlinear movements. Nonlinear components are modeled as a combination of sinusoids, each defined by its phase, amplitude, and frequency power spectrum. TimeSAPS overcomes the limitations of existing tools by providing advanced methods to recognize and model nonlinear surface movements, even when they are not known a priori.</div><div>This paper presents the theoretical foundations of TimeSAPS and demonstrates its capabilities through two case studies based on real InSAR data. These examples showcase the software’s effectiveness in reconstructing nonlinear displacement patterns and identifying periodic trends. The results underline TimeSAPS’s potential to analyze complex ground displacement scenarios, making it a valuable resource for the scientific and engineering communities.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"39 \",\"pages\":\"Article 101656\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938525002095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525002095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Advancing InSAR analysis: TimeSAPS for linear and nonlinear displacement modeling
The Synthetic Aperture Radar Interferometry (InSAR) technique enables precise monitoring of ground displacements over extensive areas based on radar data. While several open-source software packages have been developed for SAR data processing, most retrieve the average velocity of Persistent Scatterers (PS) clusters under the assumption of linear behavior, limiting their application in complex scenarios.
To enable more advanced and detailed analysis of InSAR time series, the TimeSAPS software package has been developed. This tool addresses the limitations of existing open-source packages, which primarily focus on linear approximations of displacement time series, by introducing advanced capabilities for analyzing both linear trends and nonlinear components. TimeSAPS performs a comprehensive analysis of PS derived from InSAR processing, characterizing time series in terms of linear trends, periodic signals, and nonlinear movements. Nonlinear components are modeled as a combination of sinusoids, each defined by its phase, amplitude, and frequency power spectrum. TimeSAPS overcomes the limitations of existing tools by providing advanced methods to recognize and model nonlinear surface movements, even when they are not known a priori.
This paper presents the theoretical foundations of TimeSAPS and demonstrates its capabilities through two case studies based on real InSAR data. These examples showcase the software’s effectiveness in reconstructing nonlinear displacement patterns and identifying periodic trends. The results underline TimeSAPS’s potential to analyze complex ground displacement scenarios, making it a valuable resource for the scientific and engineering communities.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems