生物质烟气碳捕集的流态化变温吸附工艺设计

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Eduardo dos Santos Funcia , Yuri Souza Beleli , Enrique Vilarrasa-Garcia , Marcelo Martins Seckler , Galo Antonio Carrillo Le Roux
{"title":"生物质烟气碳捕集的流态化变温吸附工艺设计","authors":"Eduardo dos Santos Funcia ,&nbsp;Yuri Souza Beleli ,&nbsp;Enrique Vilarrasa-Garcia ,&nbsp;Marcelo Martins Seckler ,&nbsp;Galo Antonio Carrillo Le Roux","doi":"10.1016/j.compchemeng.2025.109280","DOIUrl":null,"url":null,"abstract":"<div><div>The Paris Agreement has established ambitious global climate targets, necessitating the deployment of advanced carbon capture and storage (CCS) technologies to mitigate greenhouse gas emissions. Among these, Bioenergy with Carbon Capture and Storage (BECCS) stands out as a viable solution for achieving negative emissions. This study presents an optimization-based design framework for a simulated fluidized temperature swing adsorption (TSA) system tailored for large-scale CO<sub>2</sub> capture from biomass-derived flue gases. The process model incorporates thermodynamic, kinetic, and hydrodynamic parameters, optimizing key operating variables such as temperature, pressure, and flow rates to minimize operational costs. Simulations indicate that a four-stage adsorption system with a single desorption stage can achieve 95 % CO<sub>2</sub> purity and 97 % recovery at an estimated cost of 83.7 USD per ton of CO<sub>2</sub> captured. The study highlights the role of heat exchanger networks and process-wide optimization in improving energy efficiency and reducing costs. Furthermore, scalability analysis reveals that increasing the flue gas flow rate leads to significant economies of scale, reinforcing the viability of fluidized TSA for industrial applications. These findings contribute to the advancement of BECCS technologies, supporting global decarbonization efforts and the transition to a low-carbon economy.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"202 ","pages":"Article 109280"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a fluidized temperature swing adsorption process for biomass-derived flue gas carbon capture\",\"authors\":\"Eduardo dos Santos Funcia ,&nbsp;Yuri Souza Beleli ,&nbsp;Enrique Vilarrasa-Garcia ,&nbsp;Marcelo Martins Seckler ,&nbsp;Galo Antonio Carrillo Le Roux\",\"doi\":\"10.1016/j.compchemeng.2025.109280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Paris Agreement has established ambitious global climate targets, necessitating the deployment of advanced carbon capture and storage (CCS) technologies to mitigate greenhouse gas emissions. Among these, Bioenergy with Carbon Capture and Storage (BECCS) stands out as a viable solution for achieving negative emissions. This study presents an optimization-based design framework for a simulated fluidized temperature swing adsorption (TSA) system tailored for large-scale CO<sub>2</sub> capture from biomass-derived flue gases. The process model incorporates thermodynamic, kinetic, and hydrodynamic parameters, optimizing key operating variables such as temperature, pressure, and flow rates to minimize operational costs. Simulations indicate that a four-stage adsorption system with a single desorption stage can achieve 95 % CO<sub>2</sub> purity and 97 % recovery at an estimated cost of 83.7 USD per ton of CO<sub>2</sub> captured. The study highlights the role of heat exchanger networks and process-wide optimization in improving energy efficiency and reducing costs. Furthermore, scalability analysis reveals that increasing the flue gas flow rate leads to significant economies of scale, reinforcing the viability of fluidized TSA for industrial applications. These findings contribute to the advancement of BECCS technologies, supporting global decarbonization efforts and the transition to a low-carbon economy.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"202 \",\"pages\":\"Article 109280\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425002820\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425002820","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

《巴黎协定》确立了雄心勃勃的全球气候目标,因此有必要采用先进的碳捕集与封存(CCS)技术来减少温室气体排放。其中,生物能源与碳捕获和储存(BECCS)作为实现负排放的可行解决方案脱颖而出。本研究提出了一种基于优化的模拟流态化变温吸附(TSA)系统设计框架,该系统专为大规模捕获生物质衍生烟气中的二氧化碳而设计。该过程模型结合了热力学、动力学和流体动力学参数,优化了关键的操作变量,如温度、压力和流量,以最大限度地降低操作成本。模拟结果表明,采用单段脱附的四段吸附系统可以达到95%的CO2纯度和97%的回收率,每吨CO2捕获成本估计为83.7美元。该研究强调了热交换器网络和过程范围优化在提高能源效率和降低成本方面的作用。此外,可扩展性分析表明,增加烟气流量可以带来显著的规模经济,从而增强了流化TSA在工业应用中的可行性。这些发现有助于BECCS技术的进步,支持全球脱碳努力和向低碳经济过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a fluidized temperature swing adsorption process for biomass-derived flue gas carbon capture
The Paris Agreement has established ambitious global climate targets, necessitating the deployment of advanced carbon capture and storage (CCS) technologies to mitigate greenhouse gas emissions. Among these, Bioenergy with Carbon Capture and Storage (BECCS) stands out as a viable solution for achieving negative emissions. This study presents an optimization-based design framework for a simulated fluidized temperature swing adsorption (TSA) system tailored for large-scale CO2 capture from biomass-derived flue gases. The process model incorporates thermodynamic, kinetic, and hydrodynamic parameters, optimizing key operating variables such as temperature, pressure, and flow rates to minimize operational costs. Simulations indicate that a four-stage adsorption system with a single desorption stage can achieve 95 % CO2 purity and 97 % recovery at an estimated cost of 83.7 USD per ton of CO2 captured. The study highlights the role of heat exchanger networks and process-wide optimization in improving energy efficiency and reducing costs. Furthermore, scalability analysis reveals that increasing the flue gas flow rate leads to significant economies of scale, reinforcing the viability of fluidized TSA for industrial applications. These findings contribute to the advancement of BECCS technologies, supporting global decarbonization efforts and the transition to a low-carbon economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信