基于视频的实验更好地揭示了社会对自动驾驶汽车伦理决策的偏见

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Vladimir Maksimenko , Xinwei Li , Eui-Jin Kim , Prateek Bansal
{"title":"基于视频的实验更好地揭示了社会对自动驾驶汽车伦理决策的偏见","authors":"Vladimir Maksimenko ,&nbsp;Xinwei Li ,&nbsp;Eui-Jin Kim ,&nbsp;Prateek Bansal","doi":"10.1016/j.trc.2025.105284","DOIUrl":null,"url":null,"abstract":"<div><div>Autonomous vehicles (AVs) encounter moral dilemmas when determining whom to sacrifice in unavoidable crashes. To increase the trustworthiness of AVs, policymakers need to understand public judgment on how AVs should act in such ethically complex situations. Previous studies have evaluated public perception about these ethical matters using picture-based surveys and reported societal biases, i.e., systematic variations in ethical decisions based on the socioeconomic characteristics (e.g., gender) of the individuals involved. For instance, females may prioritise saving a female pedestrian in AV-pedestrian incidents. We investigate if these biases stem from personal beliefs or emerge during experiment engagement and if the presentation format affects bias manifestation. Analysing neural responses in moral experiments measured using electroencephalography (EEG) and behaviour model parameters, we find that video-based scenes better unveil societal biases than picture-based scenes. These biases emerge when the subject interacts with experimental information rather than being solely dictated by initial preferences. The findings support the use of realistic video-based scenes in moral experiments. These insights can inform data collection standards to shape socially acceptable ethical AI policies.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"179 ","pages":"Article 105284"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video-Based experiments better unveil societal biases towards ethical decisions of autonomous vehicles\",\"authors\":\"Vladimir Maksimenko ,&nbsp;Xinwei Li ,&nbsp;Eui-Jin Kim ,&nbsp;Prateek Bansal\",\"doi\":\"10.1016/j.trc.2025.105284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autonomous vehicles (AVs) encounter moral dilemmas when determining whom to sacrifice in unavoidable crashes. To increase the trustworthiness of AVs, policymakers need to understand public judgment on how AVs should act in such ethically complex situations. Previous studies have evaluated public perception about these ethical matters using picture-based surveys and reported societal biases, i.e., systematic variations in ethical decisions based on the socioeconomic characteristics (e.g., gender) of the individuals involved. For instance, females may prioritise saving a female pedestrian in AV-pedestrian incidents. We investigate if these biases stem from personal beliefs or emerge during experiment engagement and if the presentation format affects bias manifestation. Analysing neural responses in moral experiments measured using electroencephalography (EEG) and behaviour model parameters, we find that video-based scenes better unveil societal biases than picture-based scenes. These biases emerge when the subject interacts with experimental information rather than being solely dictated by initial preferences. The findings support the use of realistic video-based scenes in moral experiments. These insights can inform data collection standards to shape socially acceptable ethical AI policies.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"179 \",\"pages\":\"Article 105284\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X25002888\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25002888","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶汽车(av)在决定在不可避免的撞车事故中牺牲谁时遇到了道德困境。为了提高自动驾驶汽车的可信度,政策制定者需要了解公众对自动驾驶汽车在这种道德复杂的情况下应该如何行动的判断。先前的研究利用基于图片的调查评估了公众对这些伦理问题的看法,并报告了社会偏见,即基于所涉及个人的社会经济特征(如性别)的伦理决策的系统性变化。例如,在自动驾驶汽车与行人发生事故时,女性可能会优先救助女性行人。我们调查这些偏见是源于个人信仰还是在实验过程中出现的,以及呈现形式是否影响偏见的表现。通过分析使用脑电图(EEG)和行为模型参数测量的道德实验中的神经反应,我们发现基于视频的场景比基于图片的场景更能揭示社会偏见。当受试者与实验信息互动时,这些偏差就会出现,而不仅仅是由最初的偏好决定的。研究结果支持在道德实验中使用真实的视频场景。这些见解可以为数据收集标准提供信息,以形成社会可接受的道德人工智能政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video-Based experiments better unveil societal biases towards ethical decisions of autonomous vehicles
Autonomous vehicles (AVs) encounter moral dilemmas when determining whom to sacrifice in unavoidable crashes. To increase the trustworthiness of AVs, policymakers need to understand public judgment on how AVs should act in such ethically complex situations. Previous studies have evaluated public perception about these ethical matters using picture-based surveys and reported societal biases, i.e., systematic variations in ethical decisions based on the socioeconomic characteristics (e.g., gender) of the individuals involved. For instance, females may prioritise saving a female pedestrian in AV-pedestrian incidents. We investigate if these biases stem from personal beliefs or emerge during experiment engagement and if the presentation format affects bias manifestation. Analysing neural responses in moral experiments measured using electroencephalography (EEG) and behaviour model parameters, we find that video-based scenes better unveil societal biases than picture-based scenes. These biases emerge when the subject interacts with experimental information rather than being solely dictated by initial preferences. The findings support the use of realistic video-based scenes in moral experiments. These insights can inform data collection standards to shape socially acceptable ethical AI policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信