Cairo五角形单层的电磁学及应变诱导的电磁跃迁

IF 6.2 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuyi Li, Yu Zhang, Adrian Bahri, Xiaoliang Zhang, Chunjing Jia
{"title":"Cairo五角形单层的电磁学及应变诱导的电磁跃迁","authors":"Shuyi Li, Yu Zhang, Adrian Bahri, Xiaoliang Zhang, Chunjing Jia","doi":"10.1038/s41535-025-00793-0","DOIUrl":null,"url":null,"abstract":"<p>Altermagnetism, a recently discovered class of magnetic order characterized by vanishing net magnetization and spin-splitting band structures, has garnered significant research attention. In this work, we introduce a novel two-dimensional system that exhibits <i>g</i>-wave altermagnetism and undergoes a strain-induced transition from <i>g</i>-wave to <i>d</i>-wave altermagnetism. This system can be realized in an unconventional monolayer Cairo pentagonal lattice, for which we present a realistic tight-binding model that incorporates both magnetic and non-magnetic sites. Furthermore, we demonstrate that non-trivial band topology can emerge in this system by breaking the symmetry that protects the spin-polarized nodal points. Finally, ab initio calculations on several candidate materials, such as FeS<sub>2</sub> and Nb<sub>2</sub>FeB<sub>2</sub>, which exhibit symmetry consistent with the proposed tight-binding Hamiltonian, are also presented. These findings open new avenues for exploring spintronic devices based on altermagnetic systems.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"21 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altermagnetism and strain induced altermagnetic transition in Cairo pentagonal monolayer\",\"authors\":\"Shuyi Li, Yu Zhang, Adrian Bahri, Xiaoliang Zhang, Chunjing Jia\",\"doi\":\"10.1038/s41535-025-00793-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Altermagnetism, a recently discovered class of magnetic order characterized by vanishing net magnetization and spin-splitting band structures, has garnered significant research attention. In this work, we introduce a novel two-dimensional system that exhibits <i>g</i>-wave altermagnetism and undergoes a strain-induced transition from <i>g</i>-wave to <i>d</i>-wave altermagnetism. This system can be realized in an unconventional monolayer Cairo pentagonal lattice, for which we present a realistic tight-binding model that incorporates both magnetic and non-magnetic sites. Furthermore, we demonstrate that non-trivial band topology can emerge in this system by breaking the symmetry that protects the spin-polarized nodal points. Finally, ab initio calculations on several candidate materials, such as FeS<sub>2</sub> and Nb<sub>2</sub>FeB<sub>2</sub>, which exhibit symmetry consistent with the proposed tight-binding Hamiltonian, are also presented. These findings open new avenues for exploring spintronic devices based on altermagnetic systems.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00793-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00793-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电磁学是最近发现的一类以净磁化消失和自旋分裂带结构为特征的磁序,引起了广泛的研究关注。在这项工作中,我们介绍了一种新的二维系统,它表现出g波电磁,并经历了从g波到d波电磁的应变诱导转变。该系统可以在非常规单层Cairo五边形晶格中实现,为此我们提出了一个现实的紧密结合模型,其中包含磁性和非磁性位点。此外,我们证明了通过破坏保护自旋极化节点的对称性,可以在该系统中出现非平凡带拓扑。最后,对几种候选材料(如FeS2和Nb2FeB2)进行了从头计算,它们具有与所提出的紧密结合哈密顿量一致的对称性。这些发现为探索基于电磁系统的自旋电子器件开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Altermagnetism and strain induced altermagnetic transition in Cairo pentagonal monolayer

Altermagnetism and strain induced altermagnetic transition in Cairo pentagonal monolayer

Altermagnetism, a recently discovered class of magnetic order characterized by vanishing net magnetization and spin-splitting band structures, has garnered significant research attention. In this work, we introduce a novel two-dimensional system that exhibits g-wave altermagnetism and undergoes a strain-induced transition from g-wave to d-wave altermagnetism. This system can be realized in an unconventional monolayer Cairo pentagonal lattice, for which we present a realistic tight-binding model that incorporates both magnetic and non-magnetic sites. Furthermore, we demonstrate that non-trivial band topology can emerge in this system by breaking the symmetry that protects the spin-polarized nodal points. Finally, ab initio calculations on several candidate materials, such as FeS2 and Nb2FeB2, which exhibit symmetry consistent with the proposed tight-binding Hamiltonian, are also presented. These findings open new avenues for exploring spintronic devices based on altermagnetic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信