不变的非平衡动态转录调控优化信息流。

ArXiv Pub Date : 2025-07-16
{"title":"不变的非平衡动态转录调控优化信息流。","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic gene regulation is based on stochastic yet controlled promoter switching, during which genes transition between transcriptionally active and inactive states. Despite the molecular complexity of this process, recent studies reveal a surprising invariance of the \"switching correlation time\" ($T_C$), which characterizes promoter activity fluctuations, across gene expression levels in diverse genes and organisms. A biophysically plausible explanation for this invariance remains missing. Here, we show that this invariance imposes stringent constraints on minimal yet plausible models of transcriptional regulation, requiring at least four system states and non-equilibrium dynamics that break detailed balance. Using Bayesian inference on Drosophila gap gene expression data, we demonstrate that such models (i) accurately reproduce the observed $T_C$-invariance; (ii) remain robust to parameter perturbations; and (iii) maximize information transmission from transcription factor concentration to gene expression. These findings suggest that eukaryotic gene regulation has evolved to balance precision with reaction rate and energy dissipation constraints, favoring non-equilibrium architectures for optimal information transmission.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Invariant non-equilibrium dynamics of transcriptional regulation optimize information flow.\",\"authors\":\"\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotic gene regulation is based on stochastic yet controlled promoter switching, during which genes transition between transcriptionally active and inactive states. Despite the molecular complexity of this process, recent studies reveal a surprising invariance of the \\\"switching correlation time\\\" ($T_C$), which characterizes promoter activity fluctuations, across gene expression levels in diverse genes and organisms. A biophysically plausible explanation for this invariance remains missing. Here, we show that this invariance imposes stringent constraints on minimal yet plausible models of transcriptional regulation, requiring at least four system states and non-equilibrium dynamics that break detailed balance. Using Bayesian inference on Drosophila gap gene expression data, we demonstrate that such models (i) accurately reproduce the observed $T_C$-invariance; (ii) remain robust to parameter perturbations; and (iii) maximize information transmission from transcription factor concentration to gene expression. These findings suggest that eukaryotic gene regulation has evolved to balance precision with reaction rate and energy dissipation constraints, favoring non-equilibrium architectures for optimal information transmission.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

真核生物的基因调控是基于随机可控的启动子开关,在此过程中基因在转录活性和非活性状态之间转换。尽管这一过程具有分子复杂性,但最近的研究表明,在不同基因和生物体的基因表达水平上,表征启动子活性波动的“开关相关时间”(T_C$)具有惊人的不变性。生物物理学对这种不变性的合理解释仍然缺失。在这里,我们表明这种不变性对最小但合理的转录调控模型施加了严格的约束,至少需要四种系统状态和打破详细平衡的非平衡动态。通过对果蝇间隙基因表达数据的贝叶斯推断,我们证明了这些模型(i)准确地再现了观察到的$T_C$-不变性;(ii)对参数扰动保持稳健;(3)最大限度地实现从转录因子浓度到基因表达的信息传递。这些发现表明,真核生物的基因调控已经进化到平衡精度与反应速率和能量耗散的限制,有利于非平衡结构的最佳信息传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant non-equilibrium dynamics of transcriptional regulation optimize information flow.

Eukaryotic gene regulation is based on stochastic yet controlled promoter switching, during which genes transition between transcriptionally active and inactive states. Despite the molecular complexity of this process, recent studies reveal a surprising invariance of the "switching correlation time" ($T_C$), which characterizes promoter activity fluctuations, across gene expression levels in diverse genes and organisms. A biophysically plausible explanation for this invariance remains missing. Here, we show that this invariance imposes stringent constraints on minimal yet plausible models of transcriptional regulation, requiring at least four system states and non-equilibrium dynamics that break detailed balance. Using Bayesian inference on Drosophila gap gene expression data, we demonstrate that such models (i) accurately reproduce the observed $T_C$-invariance; (ii) remain robust to parameter perturbations; and (iii) maximize information transmission from transcription factor concentration to gene expression. These findings suggest that eukaryotic gene regulation has evolved to balance precision with reaction rate and energy dissipation constraints, favoring non-equilibrium architectures for optimal information transmission.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信