Assay2Mol:使用BioAssay上下文进行基于大语言模型的药物设计。

ArXiv Pub Date : 2025-07-16
{"title":"Assay2Mol:使用BioAssay上下文进行基于大语言模型的药物设计。","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Scientific databases aggregate vast amounts of quantitative data alongside descriptive text. In biochemistry, molecule screening assays evaluate the functional responses of candidate molecules against disease targets. Unstructured text that describes the biological mechanisms through which these targets operate, experimental screening protocols, and other attributes of assays offer rich information for new drug discovery campaigns but has been untapped because of that unstructured format. We present Assay2Mol, a large language model-based workflow that can capitalize on the vast existing biochemical screening assays for early-stage drug discovery. Assay2Mol retrieves existing assay records involving targets similar to the new target and generates candidate molecules using in-context learning with the retrieved assay screening data. Assay2Mol outperforms recent machine learning approaches that generate candidate ligand molecules for target protein structures, while also promoting more synthesizable molecule generation.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assay2Mol: large language model-based drug design using BioAssay context.\",\"authors\":\"\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scientific databases aggregate vast amounts of quantitative data alongside descriptive text. In biochemistry, molecule screening assays evaluate the functional responses of candidate molecules against disease targets. Unstructured text that describes the biological mechanisms through which these targets operate, experimental screening protocols, and other attributes of assays offer rich information for new drug discovery campaigns but has been untapped because of that unstructured format. We present Assay2Mol, a large language model-based workflow that can capitalize on the vast existing biochemical screening assays for early-stage drug discovery. Assay2Mol retrieves existing assay records involving targets similar to the new target and generates candidate molecules using in-context learning with the retrieved assay screening data. Assay2Mol outperforms recent machine learning approaches that generate candidate ligand molecules for target protein structures, while also promoting more synthesizable molecule generation.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学数据库汇集了大量的定量数据和描述性文本。在生物化学中,分子筛选试验评估候选分子对疾病靶标的功能反应。描述这些靶标运作的生物学机制、实验筛选方案和其他检测属性的非结构化文本为新药发现活动提供了丰富的信息,但由于这种非结构化格式,尚未得到开发。我们提出了Assay2Mol,这是一个基于语言模型的大型工作流程,可以利用现有的大量生化筛选分析来进行早期药物发现。Assay2Mol检索涉及与新目标相似的目标的现有分析记录,并使用检索到的分析筛选数据使用上下文学习生成候选分子。Assay2Mol优于最近的机器学习方法,为目标蛋白质结构生成候选配体分子,同时也促进了更多可合成的分子生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assay2Mol: large language model-based drug design using BioAssay context.

Scientific databases aggregate vast amounts of quantitative data alongside descriptive text. In biochemistry, molecule screening assays evaluate the functional responses of candidate molecules against disease targets. Unstructured text that describes the biological mechanisms through which these targets operate, experimental screening protocols, and other attributes of assays offer rich information for new drug discovery campaigns but has been untapped because of that unstructured format. We present Assay2Mol, a large language model-based workflow that can capitalize on the vast existing biochemical screening assays for early-stage drug discovery. Assay2Mol retrieves existing assay records involving targets similar to the new target and generates candidate molecules using in-context learning with the retrieved assay screening data. Assay2Mol outperforms recent machine learning approaches that generate candidate ligand molecules for target protein structures, while also promoting more synthesizable molecule generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信