abfold:更容易运行和比较AlphaFold 3, Boltz-1和Chai-1。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-06-27 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf153
Luc G Elliott, Adam J Simpkin, Daniel J Rigden
{"title":"abfold:更容易运行和比较AlphaFold 3, Boltz-1和Chai-1。","authors":"Luc G Elliott, Adam J Simpkin, Daniel J Rigden","doi":"10.1093/bioadv/vbaf153","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The latest generation of deep learning-based structure prediction methods enable accurate modelling of most proteins and many complexes. However, preparing inputs for the locally installed software is not always straightforward, and the results of local runs are not always presented in an ideally accessible fashion. Furthermore, it is not yet clear whether the latest tools perform equivalently for all types of target.</p><p><strong>Results: </strong>ABCFold facilitates the use of AlphaFold 3, Boltz-1, and Chai-1 with a standardized input to predict atomic structures, with Boltz-1 and Chai-1 being installed on runtime (if required). MSAs can be generated internally using either the JackHMMER MSA search within AlphaFold 3, or with the MMseqs2 API. Alternatively, users can provide their own custom MSAs. This therefore allows AlphaFold 3 to be installed and run without downloading the large databases needed for JackHMMER. There are also straightforward options to use templates, including custom templates. Results from all packages are treated in a unified fashion, enabling easy comparison of results from different methods. A variety of visualization options are available which include information on steric clashes.</p><p><strong>Availability and implementation: </strong>ABCFold is coded in Python and JavaScript. All scripts and associated documentation are available from https://github.com/rigdenlab/ABCFold or https://pypi.org/project/ABCFold/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf153"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287924/pdf/","citationCount":"0","resultStr":"{\"title\":\"ABCFold: easier running and comparison of AlphaFold 3, Boltz-1, and Chai-1.\",\"authors\":\"Luc G Elliott, Adam J Simpkin, Daniel J Rigden\",\"doi\":\"10.1093/bioadv/vbaf153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The latest generation of deep learning-based structure prediction methods enable accurate modelling of most proteins and many complexes. However, preparing inputs for the locally installed software is not always straightforward, and the results of local runs are not always presented in an ideally accessible fashion. Furthermore, it is not yet clear whether the latest tools perform equivalently for all types of target.</p><p><strong>Results: </strong>ABCFold facilitates the use of AlphaFold 3, Boltz-1, and Chai-1 with a standardized input to predict atomic structures, with Boltz-1 and Chai-1 being installed on runtime (if required). MSAs can be generated internally using either the JackHMMER MSA search within AlphaFold 3, or with the MMseqs2 API. Alternatively, users can provide their own custom MSAs. This therefore allows AlphaFold 3 to be installed and run without downloading the large databases needed for JackHMMER. There are also straightforward options to use templates, including custom templates. Results from all packages are treated in a unified fashion, enabling easy comparison of results from different methods. A variety of visualization options are available which include information on steric clashes.</p><p><strong>Availability and implementation: </strong>ABCFold is coded in Python and JavaScript. All scripts and associated documentation are available from https://github.com/rigdenlab/ABCFold or https://pypi.org/project/ABCFold/.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf153\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:最新一代基于深度学习的结构预测方法能够对大多数蛋白质和许多复合物进行准确建模。然而,为本地安装的软件准备输入并不总是直截了当的,并且本地运行的结果并不总是以理想的可访问方式呈现。此外,目前尚不清楚最新的工具是否对所有类型的目标都具有相同的效果。结果:ABCFold促进了使用AlphaFold 3、Boltz-1和Chai-1的标准化输入来预测原子结构,Boltz-1和Chai-1在运行时安装(如果需要)。MSA可以在内部使用AlphaFold 3中的JackHMMER MSA搜索或MMseqs2 API生成。或者,用户可以提供他们自己的自定义msa。因此,无需下载JackHMMER所需的大型数据库,就可以安装和运行AlphaFold 3。也有使用模板的直接选项,包括自定义模板。所有包的结果都以统一的方式处理,便于比较不同方法的结果。有多种可视化选项可供选择,其中包括有关立体冲突的信息。可用性和实现:abcold是用Python和JavaScript编写的。所有脚本和相关文档可从https://github.com/rigdenlab/ABCFold或https://pypi.org/project/ABCFold/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ABCFold: easier running and comparison of AlphaFold 3, Boltz-1, and Chai-1.

ABCFold: easier running and comparison of AlphaFold 3, Boltz-1, and Chai-1.

ABCFold: easier running and comparison of AlphaFold 3, Boltz-1, and Chai-1.

ABCFold: easier running and comparison of AlphaFold 3, Boltz-1, and Chai-1.

Motivation: The latest generation of deep learning-based structure prediction methods enable accurate modelling of most proteins and many complexes. However, preparing inputs for the locally installed software is not always straightforward, and the results of local runs are not always presented in an ideally accessible fashion. Furthermore, it is not yet clear whether the latest tools perform equivalently for all types of target.

Results: ABCFold facilitates the use of AlphaFold 3, Boltz-1, and Chai-1 with a standardized input to predict atomic structures, with Boltz-1 and Chai-1 being installed on runtime (if required). MSAs can be generated internally using either the JackHMMER MSA search within AlphaFold 3, or with the MMseqs2 API. Alternatively, users can provide their own custom MSAs. This therefore allows AlphaFold 3 to be installed and run without downloading the large databases needed for JackHMMER. There are also straightforward options to use templates, including custom templates. Results from all packages are treated in a unified fashion, enabling easy comparison of results from different methods. A variety of visualization options are available which include information on steric clashes.

Availability and implementation: ABCFold is coded in Python and JavaScript. All scripts and associated documentation are available from https://github.com/rigdenlab/ABCFold or https://pypi.org/project/ABCFold/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信