OAC1提高mitofusin 2表达,减轻实验性缺血性脑卒中后神经元损伤。

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Yuanyuan Wang, Kechun Chen, Bingtian Xu, Haitao Wang, Honghao Wang, Tianming Lü
{"title":"OAC1提高mitofusin 2表达,减轻实验性缺血性脑卒中后神经元损伤。","authors":"Yuanyuan Wang, Kechun Chen, Bingtian Xu, Haitao Wang, Honghao Wang, Tianming Lü","doi":"10.4196/kjpp.24.428","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research indicates that mitofusin 2 (MFN2) plays a pivotal role in the neuroprotective effects achieved by silencing nuclear receptor subfamily 6 group A member 1 (NR6A1) during cerebral ischemia. While NR6A1 is known to inhibit octamer-binding transcription factor 4 (OCT4), the regulatory relationship between OCT4 and MFN2 remains unknown. This study explores the neuroprotective effects of OCT4-activating compound 1 (OAC1), an OCT4 activator, against cerebral ischemia/reperfusion injuries and its underlying mechanism. In a murine stroke model, administration of OAC1 (3 mg/kg) significantly reduced brain infarction of mice and loss of MFN2. Notably, OAC1 treatment mitigated neuronal injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in a dose-dependent manner. Additionally, OAC1 treatment also alleviated dysfunction of mitochondria and endoplasmic reticulum stress. Moreover, OAC1 application preserved both OCT4 and MFN2 expression following OGD/R, and MFN2 facilitate protective function of OAC1 against neuronal damage induced by OGD/R. Our results demonstrate that OAC1 can alleviate neuronal damage in cerebral ischemia by activating the OCT4/MFN2. These findings offer novel insights into MFN2 regulation and highlight OCT4's potential as a therapeutic target for cerebral ischemia.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OAC1 improves mitofusin 2 expression to alleviate neuronal injury following experimental ischemic stroke.\",\"authors\":\"Yuanyuan Wang, Kechun Chen, Bingtian Xu, Haitao Wang, Honghao Wang, Tianming Lü\",\"doi\":\"10.4196/kjpp.24.428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent research indicates that mitofusin 2 (MFN2) plays a pivotal role in the neuroprotective effects achieved by silencing nuclear receptor subfamily 6 group A member 1 (NR6A1) during cerebral ischemia. While NR6A1 is known to inhibit octamer-binding transcription factor 4 (OCT4), the regulatory relationship between OCT4 and MFN2 remains unknown. This study explores the neuroprotective effects of OCT4-activating compound 1 (OAC1), an OCT4 activator, against cerebral ischemia/reperfusion injuries and its underlying mechanism. In a murine stroke model, administration of OAC1 (3 mg/kg) significantly reduced brain infarction of mice and loss of MFN2. Notably, OAC1 treatment mitigated neuronal injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in a dose-dependent manner. Additionally, OAC1 treatment also alleviated dysfunction of mitochondria and endoplasmic reticulum stress. Moreover, OAC1 application preserved both OCT4 and MFN2 expression following OGD/R, and MFN2 facilitate protective function of OAC1 against neuronal damage induced by OGD/R. Our results demonstrate that OAC1 can alleviate neuronal damage in cerebral ischemia by activating the OCT4/MFN2. These findings offer novel insights into MFN2 regulation and highlight OCT4's potential as a therapeutic target for cerebral ischemia.</p>\",\"PeriodicalId\":54746,\"journal\":{\"name\":\"Korean Journal of Physiology & Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Physiology & Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4196/kjpp.24.428\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,mitofusin 2 (MFN2)在脑缺血时通过沉默核受体亚家族6组a成员1 (NR6A1)实现神经保护作用中起关键作用。虽然已知NR6A1可以抑制OCT4,但OCT4与MFN2之间的调控关系尚不清楚。本研究探讨OCT4激活剂OCT4激活化合物1 (OAC1)对脑缺血再灌注损伤的神经保护作用及其机制。在小鼠脑卒中模型中,OAC1 (3 mg/kg)可显著减少小鼠脑梗死和MFN2的损失。值得注意的是,OAC1治疗以剂量依赖的方式减轻了氧-葡萄糖剥夺/再氧化(OGD/R)诱导的神经元损伤。此外,OAC1治疗还能减轻线粒体功能障碍和内质网应激。此外,OAC1可维持OGD/R后OCT4和MFN2的表达,MFN2可促进OAC1对OGD/R诱导的神经元损伤的保护功能。结果表明,OAC1可通过激活OCT4/MFN2来减轻脑缺血时神经元的损伤。这些发现为MFN2调控提供了新的见解,并突出了OCT4作为脑缺血治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OAC1 improves mitofusin 2 expression to alleviate neuronal injury following experimental ischemic stroke.

Recent research indicates that mitofusin 2 (MFN2) plays a pivotal role in the neuroprotective effects achieved by silencing nuclear receptor subfamily 6 group A member 1 (NR6A1) during cerebral ischemia. While NR6A1 is known to inhibit octamer-binding transcription factor 4 (OCT4), the regulatory relationship between OCT4 and MFN2 remains unknown. This study explores the neuroprotective effects of OCT4-activating compound 1 (OAC1), an OCT4 activator, against cerebral ischemia/reperfusion injuries and its underlying mechanism. In a murine stroke model, administration of OAC1 (3 mg/kg) significantly reduced brain infarction of mice and loss of MFN2. Notably, OAC1 treatment mitigated neuronal injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in a dose-dependent manner. Additionally, OAC1 treatment also alleviated dysfunction of mitochondria and endoplasmic reticulum stress. Moreover, OAC1 application preserved both OCT4 and MFN2 expression following OGD/R, and MFN2 facilitate protective function of OAC1 against neuronal damage induced by OGD/R. Our results demonstrate that OAC1 can alleviate neuronal damage in cerebral ischemia by activating the OCT4/MFN2. These findings offer novel insights into MFN2 regulation and highlight OCT4's potential as a therapeutic target for cerebral ischemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信