Xiao Luo , Bin Hu , Shuyi Zhou , Qiuwen Wu , Chen Geng , Lingxiao Zhao , Yuxin Li , Ruoyu Di , Jian Pu , Daoying Geng , Liqin Yang PhD
{"title":"CAP-Net:基于计算机断层血管造影的颈动脉斑块分割系统。","authors":"Xiao Luo , Bin Hu , Shuyi Zhou , Qiuwen Wu , Chen Geng , Lingxiao Zhao , Yuxin Li , Ruoyu Di , Jian Pu , Daoying Geng , Liqin Yang PhD","doi":"10.1016/j.acra.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale and Objectives</h3><div>Diagnosis of carotid plaques from head and neck CT angiography (CTA) scans is typically time-consuming and labor-intensive, leading to limited studies and unpleasant results in this area. The objective of this study is to develop a deep-learning-based model for detection and segmentation of carotid plaques using CTA images.</div></div><div><h3>Materials and Methods</h3><div>CTA images from 1061 patients (765 male; 296 female) with 4048 carotid plaques were included and split into a 75% training-validation set and a 25% independent test set. We built a workflow involving three modified deep learning networks: a plain U-Net for coarse artery segmentation, an Attention U-Net for fine artery segmentation, a dual-channel-input ConvNeXt-based U-Net architecture for plaque segmentation, and post-processing to refine predictions and eliminate false positives. The models were trained on the training-validation set using five-fold cross-validation and further evaluated on the independent test set using comprehensive metrics for segmentation and plaque detection.</div></div><div><h3>Results</h3><div>The proposed workflow was evaluated in the independent test set (261 patients with 902 carotid plaques) and achieved a mean dice similarity coefficient (DSC) of 0.91±0.04 in artery segmentation, and 0.75±0.14/0.67±0.15 in plaque segmentation per artery/patient. The model detected 95.5% (861/902) plaques, including 96.6% (423/438), 95.3% (307/322), and 92.3% (131/142) of calcified, mixed, and soft plaques, with less than one (0.63±0.93) false positive plaque per patient on average.</div></div><div><h3>Conclusion</h3><div>This study developed an automatic detection and segmentation deep learning-based CAP-Net for carotid plaques using CTA, which yielded promising results in identifying and delineating plaques.</div></div>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":"32 10","pages":"Pages 6194-6204"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAP-Net: Carotid Artery Plaque Segmentation System Based on Computed Tomography Angiography\",\"authors\":\"Xiao Luo , Bin Hu , Shuyi Zhou , Qiuwen Wu , Chen Geng , Lingxiao Zhao , Yuxin Li , Ruoyu Di , Jian Pu , Daoying Geng , Liqin Yang PhD\",\"doi\":\"10.1016/j.acra.2025.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale and Objectives</h3><div>Diagnosis of carotid plaques from head and neck CT angiography (CTA) scans is typically time-consuming and labor-intensive, leading to limited studies and unpleasant results in this area. The objective of this study is to develop a deep-learning-based model for detection and segmentation of carotid plaques using CTA images.</div></div><div><h3>Materials and Methods</h3><div>CTA images from 1061 patients (765 male; 296 female) with 4048 carotid plaques were included and split into a 75% training-validation set and a 25% independent test set. We built a workflow involving three modified deep learning networks: a plain U-Net for coarse artery segmentation, an Attention U-Net for fine artery segmentation, a dual-channel-input ConvNeXt-based U-Net architecture for plaque segmentation, and post-processing to refine predictions and eliminate false positives. The models were trained on the training-validation set using five-fold cross-validation and further evaluated on the independent test set using comprehensive metrics for segmentation and plaque detection.</div></div><div><h3>Results</h3><div>The proposed workflow was evaluated in the independent test set (261 patients with 902 carotid plaques) and achieved a mean dice similarity coefficient (DSC) of 0.91±0.04 in artery segmentation, and 0.75±0.14/0.67±0.15 in plaque segmentation per artery/patient. The model detected 95.5% (861/902) plaques, including 96.6% (423/438), 95.3% (307/322), and 92.3% (131/142) of calcified, mixed, and soft plaques, with less than one (0.63±0.93) false positive plaque per patient on average.</div></div><div><h3>Conclusion</h3><div>This study developed an automatic detection and segmentation deep learning-based CAP-Net for carotid plaques using CTA, which yielded promising results in identifying and delineating plaques.</div></div>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\"32 10\",\"pages\":\"Pages 6194-6204\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1076633225006488\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1076633225006488","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
CAP-Net: Carotid Artery Plaque Segmentation System Based on Computed Tomography Angiography
Rationale and Objectives
Diagnosis of carotid plaques from head and neck CT angiography (CTA) scans is typically time-consuming and labor-intensive, leading to limited studies and unpleasant results in this area. The objective of this study is to develop a deep-learning-based model for detection and segmentation of carotid plaques using CTA images.
Materials and Methods
CTA images from 1061 patients (765 male; 296 female) with 4048 carotid plaques were included and split into a 75% training-validation set and a 25% independent test set. We built a workflow involving three modified deep learning networks: a plain U-Net for coarse artery segmentation, an Attention U-Net for fine artery segmentation, a dual-channel-input ConvNeXt-based U-Net architecture for plaque segmentation, and post-processing to refine predictions and eliminate false positives. The models were trained on the training-validation set using five-fold cross-validation and further evaluated on the independent test set using comprehensive metrics for segmentation and plaque detection.
Results
The proposed workflow was evaluated in the independent test set (261 patients with 902 carotid plaques) and achieved a mean dice similarity coefficient (DSC) of 0.91±0.04 in artery segmentation, and 0.75±0.14/0.67±0.15 in plaque segmentation per artery/patient. The model detected 95.5% (861/902) plaques, including 96.6% (423/438), 95.3% (307/322), and 92.3% (131/142) of calcified, mixed, and soft plaques, with less than one (0.63±0.93) false positive plaque per patient on average.
Conclusion
This study developed an automatic detection and segmentation deep learning-based CAP-Net for carotid plaques using CTA, which yielded promising results in identifying and delineating plaques.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.