Rafael Parra-Medina, Carlos Zambrano-Betancourt, Sergio Peña-Rojas, Lina Quintero-Ortiz, Maria Victoria Caro, Ivan Romero, Javier Hernan Gil-Gómez, John Jaime Sprockel, Sandra Cancino, Andres Mosquera-Zamudio
{"title":"应用深度学习模型检测胃组织病理活检中幽门螺杆菌感染。","authors":"Rafael Parra-Medina, Carlos Zambrano-Betancourt, Sergio Peña-Rojas, Lina Quintero-Ortiz, Maria Victoria Caro, Ivan Romero, Javier Hernan Gil-Gómez, John Jaime Sprockel, Sandra Cancino, Andres Mosquera-Zamudio","doi":"10.3390/jimaging11070226","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, <i>Helicobacter pylori</i> (HP) gastritis has been diagnosed by pathologists through the examination of gastric biopsies using optical microscopy with standard hematoxylin and eosin (H&E) staining. However, with the adoption of digital pathology, the identification of HP faces certain limitations, particularly due to insufficient resolution in some scanned images. Moreover, interobserver variability has been well documented in the traditional diagnostic approach, which may further complicate consistent interpretation. In this context, deep convolutional neural network (DCNN) models are showing promising results in the automated detection of this infection in whole-slide images (WSIs). The aim of the present article is to detect the presence of <i>HP</i> infection from our own institutional dataset of histopathological gastric biopsy samples using different pretrained and recognized DCNN and AutoML approaches. The dataset comprises 100 H&E-stained WSIs of gastric biopsies. HP infection was confirmed previously using immunohistochemical confirmation. A total of 45,795 patches were selected for model development. InceptionV3, Resnet50, and VGG16 achieved AUC (area under the curve) values of 1. However, InceptionV3 showed superior metrics such as accuracy (97%), recall (100%), F1 score (97%), and MCC (93%). BoostedNet and AutoKeras achieved accuracy, precision, recall, specificity, and F1 scores less than 85%. The InceptionV3 model was used for external validation, and the predictions across all patches yielded a global accuracy of 78%. In conclusion, DCNN models showed stronger potential for diagnosing HP in gastric biopsies compared with the auto ML approach. However, due to variability across pathology applications, no single model is universally optimal. A problem-specific approach is essential. With growing WSI adoption, DL can improve diagnostic accuracy, reduce variability, and streamline pathology workflows using automation.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295413/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection of <i>Helicobacter pylori</i> Infection in Histopathological Gastric Biopsies Using Deep Learning Models.\",\"authors\":\"Rafael Parra-Medina, Carlos Zambrano-Betancourt, Sergio Peña-Rojas, Lina Quintero-Ortiz, Maria Victoria Caro, Ivan Romero, Javier Hernan Gil-Gómez, John Jaime Sprockel, Sandra Cancino, Andres Mosquera-Zamudio\",\"doi\":\"10.3390/jimaging11070226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally, <i>Helicobacter pylori</i> (HP) gastritis has been diagnosed by pathologists through the examination of gastric biopsies using optical microscopy with standard hematoxylin and eosin (H&E) staining. However, with the adoption of digital pathology, the identification of HP faces certain limitations, particularly due to insufficient resolution in some scanned images. Moreover, interobserver variability has been well documented in the traditional diagnostic approach, which may further complicate consistent interpretation. In this context, deep convolutional neural network (DCNN) models are showing promising results in the automated detection of this infection in whole-slide images (WSIs). The aim of the present article is to detect the presence of <i>HP</i> infection from our own institutional dataset of histopathological gastric biopsy samples using different pretrained and recognized DCNN and AutoML approaches. The dataset comprises 100 H&E-stained WSIs of gastric biopsies. HP infection was confirmed previously using immunohistochemical confirmation. A total of 45,795 patches were selected for model development. InceptionV3, Resnet50, and VGG16 achieved AUC (area under the curve) values of 1. However, InceptionV3 showed superior metrics such as accuracy (97%), recall (100%), F1 score (97%), and MCC (93%). BoostedNet and AutoKeras achieved accuracy, precision, recall, specificity, and F1 scores less than 85%. The InceptionV3 model was used for external validation, and the predictions across all patches yielded a global accuracy of 78%. In conclusion, DCNN models showed stronger potential for diagnosing HP in gastric biopsies compared with the auto ML approach. However, due to variability across pathology applications, no single model is universally optimal. A problem-specific approach is essential. With growing WSI adoption, DL can improve diagnostic accuracy, reduce variability, and streamline pathology workflows using automation.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11070226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Detection of Helicobacter pylori Infection in Histopathological Gastric Biopsies Using Deep Learning Models.
Traditionally, Helicobacter pylori (HP) gastritis has been diagnosed by pathologists through the examination of gastric biopsies using optical microscopy with standard hematoxylin and eosin (H&E) staining. However, with the adoption of digital pathology, the identification of HP faces certain limitations, particularly due to insufficient resolution in some scanned images. Moreover, interobserver variability has been well documented in the traditional diagnostic approach, which may further complicate consistent interpretation. In this context, deep convolutional neural network (DCNN) models are showing promising results in the automated detection of this infection in whole-slide images (WSIs). The aim of the present article is to detect the presence of HP infection from our own institutional dataset of histopathological gastric biopsy samples using different pretrained and recognized DCNN and AutoML approaches. The dataset comprises 100 H&E-stained WSIs of gastric biopsies. HP infection was confirmed previously using immunohistochemical confirmation. A total of 45,795 patches were selected for model development. InceptionV3, Resnet50, and VGG16 achieved AUC (area under the curve) values of 1. However, InceptionV3 showed superior metrics such as accuracy (97%), recall (100%), F1 score (97%), and MCC (93%). BoostedNet and AutoKeras achieved accuracy, precision, recall, specificity, and F1 scores less than 85%. The InceptionV3 model was used for external validation, and the predictions across all patches yielded a global accuracy of 78%. In conclusion, DCNN models showed stronger potential for diagnosing HP in gastric biopsies compared with the auto ML approach. However, due to variability across pathology applications, no single model is universally optimal. A problem-specific approach is essential. With growing WSI adoption, DL can improve diagnostic accuracy, reduce variability, and streamline pathology workflows using automation.