{"title":"边缘设备的自监督对抗去模糊人脸识别网络。","authors":"Hanwen Zhang, Myun Kim, Baitong Li, Yanping Lu","doi":"10.3390/jimaging11070241","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of information technology, human activity recognition (HAR) has been widely applied in fields such as intelligent surveillance, health monitoring, and human-computer interaction. As a crucial component of HAR, facial recognition plays a key role, especially in vision-based activity recognition. However, current facial recognition models on the market perform poorly in handling blurry images and dynamic scenarios, limiting their effectiveness in real-world HAR applications. This study aims to construct a fast and accurate facial recognition model based on novel adversarial learning and deblurring theory to enhance its performance in human activity recognition. The model employs a generative adversarial network (GAN) as the core algorithm, optimizing its generation and recognition modules by decomposing the global loss function and incorporating a feature pyramid, thereby solving the balance challenge in GAN training. Additionally, deblurring techniques are introduced to improve the model's ability to handle blurry and dynamic images. Experimental results show that the proposed model achieves high accuracy and recall rates across multiple facial recognition datasets, with an average recall rate of 87.40% and accuracy rates of 81.06% and 79.77% on the YTF, IMDB-WIKI, and WiderFace datasets, respectively. These findings confirm that the model effectively addresses the challenges of recognizing faces in dynamic and blurry conditions in human activity recognition, demonstrating significant application potential.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295047/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Self-Supervised Adversarial Deblurring Face Recognition Network for Edge Devices.\",\"authors\":\"Hanwen Zhang, Myun Kim, Baitong Li, Yanping Lu\",\"doi\":\"10.3390/jimaging11070241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advancement of information technology, human activity recognition (HAR) has been widely applied in fields such as intelligent surveillance, health monitoring, and human-computer interaction. As a crucial component of HAR, facial recognition plays a key role, especially in vision-based activity recognition. However, current facial recognition models on the market perform poorly in handling blurry images and dynamic scenarios, limiting their effectiveness in real-world HAR applications. This study aims to construct a fast and accurate facial recognition model based on novel adversarial learning and deblurring theory to enhance its performance in human activity recognition. The model employs a generative adversarial network (GAN) as the core algorithm, optimizing its generation and recognition modules by decomposing the global loss function and incorporating a feature pyramid, thereby solving the balance challenge in GAN training. Additionally, deblurring techniques are introduced to improve the model's ability to handle blurry and dynamic images. Experimental results show that the proposed model achieves high accuracy and recall rates across multiple facial recognition datasets, with an average recall rate of 87.40% and accuracy rates of 81.06% and 79.77% on the YTF, IMDB-WIKI, and WiderFace datasets, respectively. These findings confirm that the model effectively addresses the challenges of recognizing faces in dynamic and blurry conditions in human activity recognition, demonstrating significant application potential.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295047/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11070241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
A Self-Supervised Adversarial Deblurring Face Recognition Network for Edge Devices.
With the advancement of information technology, human activity recognition (HAR) has been widely applied in fields such as intelligent surveillance, health monitoring, and human-computer interaction. As a crucial component of HAR, facial recognition plays a key role, especially in vision-based activity recognition. However, current facial recognition models on the market perform poorly in handling blurry images and dynamic scenarios, limiting their effectiveness in real-world HAR applications. This study aims to construct a fast and accurate facial recognition model based on novel adversarial learning and deblurring theory to enhance its performance in human activity recognition. The model employs a generative adversarial network (GAN) as the core algorithm, optimizing its generation and recognition modules by decomposing the global loss function and incorporating a feature pyramid, thereby solving the balance challenge in GAN training. Additionally, deblurring techniques are introduced to improve the model's ability to handle blurry and dynamic images. Experimental results show that the proposed model achieves high accuracy and recall rates across multiple facial recognition datasets, with an average recall rate of 87.40% and accuracy rates of 81.06% and 79.77% on the YTF, IMDB-WIKI, and WiderFace datasets, respectively. These findings confirm that the model effectively addresses the challenges of recognizing faces in dynamic and blurry conditions in human activity recognition, demonstrating significant application potential.