Georgios Petmezas, Vazgken Vanian, Manuel Pastor Rufete, Eleana E I Almaloglou, Dimitris Zarpalas
{"title":"基于视频帧和微表情特征的深度伪造检测双分支融合模型。","authors":"Georgios Petmezas, Vazgken Vanian, Manuel Pastor Rufete, Eleana E I Almaloglou, Dimitris Zarpalas","doi":"10.3390/jimaging11070231","DOIUrl":null,"url":null,"abstract":"<p><p>Deepfake detection has become a critical issue due to the rise of synthetic media and its potential for misuse. In this paper, we propose a novel approach to deepfake detection by combining video frame analysis with facial microexpression features. The dual-branch fusion model utilizes a 3D ResNet18 for spatiotemporal feature extraction and a transformer model to capture microexpression patterns, which are difficult to replicate in manipulated content. We evaluate the model on the widely used FaceForensics++ (FF++) dataset and demonstrate that our approach outperforms existing state-of-the-art methods, achieving 99.81% accuracy and a perfect ROC-AUC score of 100%. The proposed method highlights the importance of integrating diverse data sources for deepfake detection, addressing some of the current limitations of existing systems.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295270/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Dual-Branch Fusion Model for Deepfake Detection Using Video Frames and Microexpression Features.\",\"authors\":\"Georgios Petmezas, Vazgken Vanian, Manuel Pastor Rufete, Eleana E I Almaloglou, Dimitris Zarpalas\",\"doi\":\"10.3390/jimaging11070231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deepfake detection has become a critical issue due to the rise of synthetic media and its potential for misuse. In this paper, we propose a novel approach to deepfake detection by combining video frame analysis with facial microexpression features. The dual-branch fusion model utilizes a 3D ResNet18 for spatiotemporal feature extraction and a transformer model to capture microexpression patterns, which are difficult to replicate in manipulated content. We evaluate the model on the widely used FaceForensics++ (FF++) dataset and demonstrate that our approach outperforms existing state-of-the-art methods, achieving 99.81% accuracy and a perfect ROC-AUC score of 100%. The proposed method highlights the importance of integrating diverse data sources for deepfake detection, addressing some of the current limitations of existing systems.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11070231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
A Dual-Branch Fusion Model for Deepfake Detection Using Video Frames and Microexpression Features.
Deepfake detection has become a critical issue due to the rise of synthetic media and its potential for misuse. In this paper, we propose a novel approach to deepfake detection by combining video frame analysis with facial microexpression features. The dual-branch fusion model utilizes a 3D ResNet18 for spatiotemporal feature extraction and a transformer model to capture microexpression patterns, which are difficult to replicate in manipulated content. We evaluate the model on the widely used FaceForensics++ (FF++) dataset and demonstrate that our approach outperforms existing state-of-the-art methods, achieving 99.81% accuracy and a perfect ROC-AUC score of 100%. The proposed method highlights the importance of integrating diverse data sources for deepfake detection, addressing some of the current limitations of existing systems.