基于视频帧和微表情特征的深度伪造检测双分支融合模型。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Georgios Petmezas, Vazgken Vanian, Manuel Pastor Rufete, Eleana E I Almaloglou, Dimitris Zarpalas
{"title":"基于视频帧和微表情特征的深度伪造检测双分支融合模型。","authors":"Georgios Petmezas, Vazgken Vanian, Manuel Pastor Rufete, Eleana E I Almaloglou, Dimitris Zarpalas","doi":"10.3390/jimaging11070231","DOIUrl":null,"url":null,"abstract":"<p><p>Deepfake detection has become a critical issue due to the rise of synthetic media and its potential for misuse. In this paper, we propose a novel approach to deepfake detection by combining video frame analysis with facial microexpression features. The dual-branch fusion model utilizes a 3D ResNet18 for spatiotemporal feature extraction and a transformer model to capture microexpression patterns, which are difficult to replicate in manipulated content. We evaluate the model on the widely used FaceForensics++ (FF++) dataset and demonstrate that our approach outperforms existing state-of-the-art methods, achieving 99.81% accuracy and a perfect ROC-AUC score of 100%. The proposed method highlights the importance of integrating diverse data sources for deepfake detection, addressing some of the current limitations of existing systems.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295270/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Dual-Branch Fusion Model for Deepfake Detection Using Video Frames and Microexpression Features.\",\"authors\":\"Georgios Petmezas, Vazgken Vanian, Manuel Pastor Rufete, Eleana E I Almaloglou, Dimitris Zarpalas\",\"doi\":\"10.3390/jimaging11070231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deepfake detection has become a critical issue due to the rise of synthetic media and its potential for misuse. In this paper, we propose a novel approach to deepfake detection by combining video frame analysis with facial microexpression features. The dual-branch fusion model utilizes a 3D ResNet18 for spatiotemporal feature extraction and a transformer model to capture microexpression patterns, which are difficult to replicate in manipulated content. We evaluate the model on the widely used FaceForensics++ (FF++) dataset and demonstrate that our approach outperforms existing state-of-the-art methods, achieving 99.81% accuracy and a perfect ROC-AUC score of 100%. The proposed method highlights the importance of integrating diverse data sources for deepfake detection, addressing some of the current limitations of existing systems.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11070231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11070231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于合成介质的兴起及其被滥用的可能性,深度伪造检测已成为一个关键问题。在本文中,我们提出了一种将视频帧分析与面部微表情特征相结合的深度伪造检测方法。双分支融合模型利用3D ResNet18进行时空特征提取,利用变压器模型捕捉微表情模式,这些微表情模式在操纵内容中难以复制。我们在广泛使用的facefrensics ++ (FF++)数据集上评估了该模型,并证明我们的方法优于现有的最先进的方法,达到99.81%的准确率和100%的完美ROC-AUC分数。所提出的方法强调了集成不同数据源进行深度伪造检测的重要性,解决了现有系统当前的一些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Dual-Branch Fusion Model for Deepfake Detection Using Video Frames and Microexpression Features.

A Dual-Branch Fusion Model for Deepfake Detection Using Video Frames and Microexpression Features.

A Dual-Branch Fusion Model for Deepfake Detection Using Video Frames and Microexpression Features.

A Dual-Branch Fusion Model for Deepfake Detection Using Video Frames and Microexpression Features.

Deepfake detection has become a critical issue due to the rise of synthetic media and its potential for misuse. In this paper, we propose a novel approach to deepfake detection by combining video frame analysis with facial microexpression features. The dual-branch fusion model utilizes a 3D ResNet18 for spatiotemporal feature extraction and a transformer model to capture microexpression patterns, which are difficult to replicate in manipulated content. We evaluate the model on the widely used FaceForensics++ (FF++) dataset and demonstrate that our approach outperforms existing state-of-the-art methods, achieving 99.81% accuracy and a perfect ROC-AUC score of 100%. The proposed method highlights the importance of integrating diverse data sources for deepfake detection, addressing some of the current limitations of existing systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信