从分子动力学角度研究脯氨寡肽酶的底物结合机制。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sylwia Czach, Katarzyna Walczewska-Szewc
{"title":"从分子动力学角度研究脯氨寡肽酶的底物结合机制。","authors":"Sylwia Czach, Katarzyna Walczewska-Szewc","doi":"10.1088/1478-3975/adf429","DOIUrl":null,"url":null,"abstract":"<p><p>Prolyl oligopeptidase (PREP) has gained attention for its role in neurodegenerative diseases, particularly through protein-protein interactions with amyloid proteins such as alpha-synuclein and Tau. Although significant research has focused on PPIs, the substrate-binding dynamics within the catalytic pocket of PREP is less understood. This study combines molecular docking and molecular dynamics simulations to investigate the behavior of known PREP substrates, including thyrotropin-releasing hormone. Our simulations reveal that TRH transitions between three preferred regions within the binding pocket, one of which is favorable for catalytic activity. The absence of a single fixed binding site near the catalytic triad region may suggest a dynamic substrate-processing mechanism. Additionally, the potential of the TRH precursor as a substrate is evaluated. Our findings highlight the utility of computational methods in the analysis of protein dynamics and enzymatic mechanisms, offering insights into the functional versatility of PREP.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating substrate binding mechanism in prolyl oligopeptidase through molecular dynamics.\",\"authors\":\"Sylwia Czach, Katarzyna Walczewska-Szewc\",\"doi\":\"10.1088/1478-3975/adf429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prolyl oligopeptidase (PREP) has gained attention for its role in neurodegenerative diseases, particularly through protein-protein interactions with amyloid proteins such as alpha-synuclein and Tau. Although significant research has focused on PPIs, the substrate-binding dynamics within the catalytic pocket of PREP is less understood. This study combines molecular docking and molecular dynamics simulations to investigate the behavior of known PREP substrates, including thyrotropin-releasing hormone. Our simulations reveal that TRH transitions between three preferred regions within the binding pocket, one of which is favorable for catalytic activity. The absence of a single fixed binding site near the catalytic triad region may suggest a dynamic substrate-processing mechanism. Additionally, the potential of the TRH precursor as a substrate is evaluated. Our findings highlight the utility of computational methods in the analysis of protein dynamics and enzymatic mechanisms, offering insights into the functional versatility of PREP.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/adf429\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/adf429","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脯氨酸寡肽酶(PREP)因其在神经退行性疾病中的作用而受到关注,特别是通过与淀粉样蛋白如α -突触核蛋白和Tau蛋白的蛋白-蛋白相互作用。虽然重要的研究集中在PPIs上,但对PREP催化口袋内的底物结合动力学知之甚少。本研究结合分子对接和分子动力学模拟来研究已知PREP底物的行为,包括促甲状腺激素释放激素。我们的模拟表明,TRH在结合袋内的三个优选区域之间转移,其中一个有利于催化活性。在催化三联体区域附近没有一个固定的结合位点,这可能暗示了一种动态的底物处理机制。此外,评估TRH前体作为底物的潜力。我们的研究结果强调了计算方法在蛋白质动力学和酶机制分析中的效用,为PREP的功能多功能性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating substrate binding mechanism in prolyl oligopeptidase through molecular dynamics.

Prolyl oligopeptidase (PREP) has gained attention for its role in neurodegenerative diseases, particularly through protein-protein interactions with amyloid proteins such as alpha-synuclein and Tau. Although significant research has focused on PPIs, the substrate-binding dynamics within the catalytic pocket of PREP is less understood. This study combines molecular docking and molecular dynamics simulations to investigate the behavior of known PREP substrates, including thyrotropin-releasing hormone. Our simulations reveal that TRH transitions between three preferred regions within the binding pocket, one of which is favorable for catalytic activity. The absence of a single fixed binding site near the catalytic triad region may suggest a dynamic substrate-processing mechanism. Additionally, the potential of the TRH precursor as a substrate is evaluated. Our findings highlight the utility of computational methods in the analysis of protein dynamics and enzymatic mechanisms, offering insights into the functional versatility of PREP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信