KIF4A通过CHMP4B/GPX4轴抑制胶质母细胞瘤铁凋亡,促进替莫唑胺耐药性

IF 3.2 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Carcinogenesis Pub Date : 2025-10-01 Epub Date: 2025-07-24 DOI:10.1002/mc.70006
Xinan Shen, Honglei Cheng, Jiarong Zheng, Yihan Xia, Yongdong Li, Quanquan Guo, Zhicheng Zhang, Nanheng Yin, Yongshun Liu, Jun Dong, Yuntian Shen
{"title":"KIF4A通过CHMP4B/GPX4轴抑制胶质母细胞瘤铁凋亡,促进替莫唑胺耐药性","authors":"Xinan Shen, Honglei Cheng, Jiarong Zheng, Yihan Xia, Yongdong Li, Quanquan Guo, Zhicheng Zhang, Nanheng Yin, Yongshun Liu, Jun Dong, Yuntian Shen","doi":"10.1002/mc.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against GBM. TMZ resistance is an important factor contributing to the poor prognosis of GBM, but the underlying molecular mechanisms are unclear. Previous studies have suggested that KIF4A may be an indicator of poor prognosis in glioma patients, but the association of KIF4A with TMZ resistance has never been investigated. The detection of ferroptosis levels in GBM cells was accomplished through the utilization of ROS, MDA, JC-1, and Western blot analysis. The assessment of TMZ resistance was performed through the implementation of CCK8, cell cloning, and cell cycle analysis. The identification of downstream targets of KIF4A was facilitated by protein profiling and immunofluorescence. KIF4A inhibits ferroptosis in GBM cells through the CHMP4B/GPX4 axis and promotes TMZ resistance. Knockdown of KIF4A or CHMP4B sensitized GBM cells to chemotherapy. In addition, KIF4A induced epithelial-mesenchymal transition in GBM cells, which synergistically promoted TMZ resistance.The present study elucidates a novel mechanism of TMZ resistance in glioblastoma through the CHMP4B/GPX4 axis. Based on these findings, targeting KIF4A may offer a potential new strategy against GBM.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1650-1666"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KIF4A Inhibits Ferroptosis in Glioblastoma via the CHMP4B/GPX4 Axis and Promotes Temozolomide Resistance.\",\"authors\":\"Xinan Shen, Honglei Cheng, Jiarong Zheng, Yihan Xia, Yongdong Li, Quanquan Guo, Zhicheng Zhang, Nanheng Yin, Yongshun Liu, Jun Dong, Yuntian Shen\",\"doi\":\"10.1002/mc.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against GBM. TMZ resistance is an important factor contributing to the poor prognosis of GBM, but the underlying molecular mechanisms are unclear. Previous studies have suggested that KIF4A may be an indicator of poor prognosis in glioma patients, but the association of KIF4A with TMZ resistance has never been investigated. The detection of ferroptosis levels in GBM cells was accomplished through the utilization of ROS, MDA, JC-1, and Western blot analysis. The assessment of TMZ resistance was performed through the implementation of CCK8, cell cloning, and cell cycle analysis. The identification of downstream targets of KIF4A was facilitated by protein profiling and immunofluorescence. KIF4A inhibits ferroptosis in GBM cells through the CHMP4B/GPX4 axis and promotes TMZ resistance. Knockdown of KIF4A or CHMP4B sensitized GBM cells to chemotherapy. In addition, KIF4A induced epithelial-mesenchymal transition in GBM cells, which synergistically promoted TMZ resistance.The present study elucidates a novel mechanism of TMZ resistance in glioblastoma through the CHMP4B/GPX4 axis. Based on these findings, targeting KIF4A may offer a potential new strategy against GBM.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"1650-1666\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.70006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.70006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤(GBM)是成人最恶性的原发性脑肿瘤。替莫唑胺(TMZ)是针对GBM的一线化疗药物。TMZ耐药是导致GBM预后不良的重要因素,但其分子机制尚不清楚。以往的研究提示KIF4A可能是胶质瘤患者预后不良的一个指标,但KIF4A与TMZ耐药的关系从未被研究过。利用ROS、MDA、JC-1和Western blot检测GBM细胞中铁下垂水平。通过CCK8、细胞克隆和细胞周期分析来评估TMZ抗性。KIF4A下游靶点的鉴定通过蛋白谱分析和免疫荧光技术得以实现。KIF4A通过CHMP4B/GPX4轴抑制GBM细胞铁下沉,促进TMZ耐药。敲低KIF4A或CHMP4B使GBM细胞对化疗敏感。此外,KIF4A诱导GBM细胞上皮-间质转化,协同促进TMZ耐药。本研究通过CHMP4B/GPX4轴阐明了胶质母细胞瘤中TMZ耐药的新机制。基于这些发现,靶向KIF4A可能提供一种潜在的治疗GBM的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KIF4A Inhibits Ferroptosis in Glioblastoma via the CHMP4B/GPX4 Axis and Promotes Temozolomide Resistance.

Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Temozolomide (TMZ) stands for the first-line chemotherapeutic agent against GBM. TMZ resistance is an important factor contributing to the poor prognosis of GBM, but the underlying molecular mechanisms are unclear. Previous studies have suggested that KIF4A may be an indicator of poor prognosis in glioma patients, but the association of KIF4A with TMZ resistance has never been investigated. The detection of ferroptosis levels in GBM cells was accomplished through the utilization of ROS, MDA, JC-1, and Western blot analysis. The assessment of TMZ resistance was performed through the implementation of CCK8, cell cloning, and cell cycle analysis. The identification of downstream targets of KIF4A was facilitated by protein profiling and immunofluorescence. KIF4A inhibits ferroptosis in GBM cells through the CHMP4B/GPX4 axis and promotes TMZ resistance. Knockdown of KIF4A or CHMP4B sensitized GBM cells to chemotherapy. In addition, KIF4A induced epithelial-mesenchymal transition in GBM cells, which synergistically promoted TMZ resistance.The present study elucidates a novel mechanism of TMZ resistance in glioblastoma through the CHMP4B/GPX4 axis. Based on these findings, targeting KIF4A may offer a potential new strategy against GBM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信